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CHAPTER I  

 

INTRODUCTION 

 

 The rediscovery of carbon nanotubes (CNTs) by Iijima unveiled a material that 

offers promise in many areas of composite engineering [1].  Carbon nanotubes are shown 

to have exceptional mechanical, electrical, and thermal properties.  Though their high 

room temperature thermal conductivity suggests that their inclusion in composite 

materials should yield a better thermally conducting composite, experimental studies 

have shown inconsistent thermal enhancement at best.  Studies that have focused on 

incorporating CNTs in composites to enhanced thermal properties have studied the 

changes in the thermal conductivity of the matrix material—usually a polymer; few 

studies focus on the changes in the CNT’s thermal conductivity when added to the 

matrix.  By understanding the behavior of the individual CNT, better techniques can be 

developed to engineer composites with the desired properties. 

 Molecular dynamics (MD) simulations offer a technique to understand the atomic 

behavior of the CNT and between the CNT and the matrix material.  Using MD 

simulations, thermal conductivity of the CNT can be studied to identify the contribution 

of individual phonon modes and how the modes are affected by interaction with the 

surrounding material.  Insight can be obtained about how thermal conduction occurs in 

the CNT when incorporated into different configurations with the matrix material.  This 

study will show that not all phonon modes contribute to increasing thermal transport, but 

rather their presence may actually produce more scattering. 
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Conduction in Bulk Materials 

 The nanoscale size of CNTs makes them materials that are unique from their bulk 

material counterpart.  Often nanostructure’s properties differ from those of the bulk 

material due to the effect of their small size.  Size effects can cause a material to have 

“super” mechanical, electrical, chemical, or thermal properties when compared to the 

bulk material.  This is often the result of having a larger aspect ratio, larger surface area, 

or small characteristic length.  When considering heat transport in CNTs, a comparison to 

heat transport in bulk carbon materials illustrates the superior performance of the CNT. 

 Three mechanisms by which heat can be transferred include: conduction, 

convection, and radiation.  Heat transfer by conduction occurs through a material due to a 

temperature difference, convection happens when fluid flow carries heat, and radiation 

carries heat by electromagnetic waves (Figure 1).  Only the former process is considered  

 

 
Figure 1 Methods of heat transfer [2] 
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in the scope of this work.  Heat conduction occurs when thermal energy is transported by 

the random motion of heat carriers, which causes a temperature gradient to form in a 

material.  The temperature gradient is the driving force that transports energy in the 

system; however, this is only true when the system is in a nonequilibrium steady state 

(Figure 2).  If reservoir 2 has a higher temperature than reservoir 1, then thermal energy  

 

 
Figure 2 A nonequilibrium state exists when a system is in contact with two reservoirs of 

temperatures T1 and T2 [3] 
 
will flow through the system from reservoir 2 to reservoir 1 in order to establish 

equilibrium; however, if the reservoirs are large their temperatures will be maintained 

and a temperature gradient occurs in the system.  The steady state characteristic arises 

from the heat flux not changing with time.  Heat conduction can be described by 

Fourier’s law that states the heat flux is proportional to the temperature gradient 

Tk∇−=q       (1.1) 

where q is the local heat flux, k is thermal conductivity, ∇ is the gradient operator such 

that the temperature gradient is defined 
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property that measures the effectiveness in conducting heat.  Thermal conductivity is 

dependent on the direction of the material; therefore, it can be written as a tensor. 

 Solid materials can have thermal energy carried by phonons, as well as electrons.  

Phonons are atomic lattice vibrations.  Depending on the material either phonons or 

electrons will dominate as heat carriers.  For example, in metals electronic contribution is 

dominant at all temperatures; however, for semiconductors the mean free path (MFP) of 

electrons can be reduced by the presence of impurities, which allows phonons to increase 

their contribution to the heat current.  Finally, insulators will have phonons as the 

dominate heat carriers [7].  Carbon materials’ thermal conductivity tends to be dominated 

by phonons due to sp3 and sp2 covalent bonding, which facilitates phonon travel over the 

stiff bonds.  Each phonon has a specific wavelength.  In CNTs the wavelength of the 

phonon has a major influence on the amount of thermal energy transported, since the 

amount of energy transported increases as longer wavelengths can be included; 

consequently, the wavelengths can be shortened due to the presence of scattering events 

like defects, impurities, and functionalizing groups. 

 Furthermore, acoustical phonons carry the majority of heat in materials.  Phonons 

modes can be described by polarization and branch.  Typically, there are three 

polarizations: one longitudinal and two transverse.  The number of branches depends on 

the number of basis atoms in the unit cell; but the branches are categorized as acoustical 

or optical.  One acoustical branch exists for each polarization and the remaining branches 

are optical branches.  In CNTs there exist four polarizations: three are translational and 

one is rotational.  The translational modes are longitudinal (L), radial breathing (B), and  
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Figure 3. The translational modes in CNTs are shown (a) longitudinal, (b) radial 
breathing, and (c) flexural. 

 
flexural (F). Figure 3 depicts the translational modes in a CNT. The longitudinal modes 

displace atoms parallel to the CNT’s axis.  Radial breathing modes expand and contract 

around the CNT’s axis. Flexural modes displace atoms normal to the axis.  The torsional 

(T) mode twists in the direction of CNT’s chiral vector.  Thermal energy transported in a 

material is the combination of energy transported by all the phonon branches for each 

polarization. 

 Thermal conductivity due to the phonons of a material can be written 

lCk ν
3
1

=       (1.1) 

where C is the specific heat, v is the group velocity, and l is the phonon MFP [7].  

Specific heat is a measure of the heat required to change a certain mass of the material by 

a specified temperature or, alternatively, the heat capacity Cv per unit mass where 

V
v

UC ⎟
⎠
⎞

⎜
⎝
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∂
∂

≡
τ

      (1.2) 

for a constant volume [3], where the fundamental temperature τ=kBT and the internal 

energy U of the system can be written 
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where E is energy; f(E) is the Bose-Einstein distribution function 
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where μ is the chemical potential; and D(E) is the density of states.  The group velocity 

specifies the direction and speed at which a wave of energy propagates.  The phonon 

MFP is the avearge distance a phonon will travel before scattering.  The MFP can be 

written as function of the scattering time t (usually denoted τ) 

νtl = ;       (1.5) 

therefore, a larger average MFP results from a larger scattering time, since scattering 

events occur less frequently.  Scattering events can be caused by scattering due to other 

phonons, impurities, defects, and/or electrons [8].  In bulk carbon materials the MFP will 

be much smaller than the size of the material; however, the size of a CNT is comparable 

to the MFP.  Since the MFP is a larger influence than the specific heat or group velocity, 

events that influence the MFP will play a larger role in the thermal conductivity.  The 

average length of the MFP in CNTs can be decreased by the presence of functionalizing 

groups.  Also, the interaction between phonon modes can cause the MFP to be shorter 

than what might be observed by with a single phonon mode. 

 

Conduction in Nanostructures 

 Thermal transport can be described as diffusive or ballistic.  Diffusive thermal 

transport occurs when phonons scatter while traveling through the system; on the other 

hand, ballistic transport has no internal scattering events [4].  These transport phenomena 
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can be related to the MFP—the average distance travelled before a scattering event 

occurs.  When the size of the system is larger than the MFP, scattering events will occur 

causing diffusive transport.  In ballistic transport, the MFP is larger than the system size; 

therefore, no scattering of the phonon can happen before the end of the system is reached.  

Fourier’s law is based on the presence of a temperature gradient—and consequently, 

diffusive transport.  In the case of ballistic transport, a temperature difference, rather than 

gradient, exists between the ends of the system [7].  When ballistic transport occurs, the 

only scattering event in nanostructures stems from the boundary of the system.  Thermal 

conductivity scales with the system size; in the ballistic regime, increasing the system’s 

size allows phonons of longer wavelengths to contribute to thermal transport and increase 

conductivity.  If a crystal lattice is perfect, then thermal conductivity is intrinsic and 

limited by the anharmonicity of the interatomic forces.  The intrinsic scattering processes 

can be normal (N) or Umklapp (U) processes.  When phonons are scattered by N-

processes momentum is conserved; however, U-processes do not conserve momentum 

and are responsible for thermal resistivity.  Extrinsic thermal conductivity is limited by 

phonons scattering on defects in the crystal [7], [9].  The scope of this study will 

investigate the ballistic regime of CNTs at lengths up to 1 μm.  Additionally, the effect of 

functionalizing atoms and bond strength on the MFP will be studied. 

 

Carbon Nanotubes 

 Carbon nanotubes (CNTs) are rolled up sheets of graphite that are confined in two 

dimensions.  If only a single layer of graphite—known as graphene—is used to construct 

a CNT, then it is called a single-walled CNT (SWNT); several graphene sheets rolled up 
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to make concentric cylinders are known as a multiwalled CNT (MWNT).  A SWNT can 

be named according to the direction the graphene sheet is rolled.  Figure 4 shows how 

CNTs can be rolled up from a graphene sheet and are different based on the direction.  

The chiral vector that defines the CNT is  

21 mana +=c      (1.8) 

where a1 and a2 are the basis vectors of the hexagonal graphene sheet [10].  The integers 

n and m are used to characterize SWNTs, which are called armchair (n,n), zig-zag (n,0), 

or chiral (n,m).  Armchair SWNTs have electrical properties that are metallic.  Zig-zag  

 

 
 

Figure 4 Starting from a graphene sheet armchair, chiral, or zig-zag CNTs can be formed 
based on the direction of the chiral vector [11].  Armchair SWNT orientation occurs 

when rolling the graphene sheet from left to right and zig-zag SWNT, when rolling from 
top to bottom; chiral SWNTs result when the sheet is rolled along any vector in between 

the armchair and zig-zag direction. 
 
and chiral SWNTs are metallic if (n-m)/3; otherwise, they are semiconducting where the 

bandgap is inversely dependent on the diameter of the tube [11].    
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 Like other carbon allotropes, CNTs exhibit exceptional thermal properties.  The 

strong carbon bonds are paramount to the transport of thermal energy.  The bonds 

between carbon atoms are strong and stiff, which is ideal for achieving high thermal 

conductivity.  For CNTs thermal conductivity along the axis is very large.  For MWNTs, 

thermal conductivity in the radial direction is expected to be lower; the decrease comes 

from the additional effect of weak van der Waals forces between the layers of the 

MWNT.  The thermal conductivity of CNTs is generally independent of the chirality of 

the nanotube [12].  The length of the CNT plays a large role in the thermal conductivity 

in the longitudinal direction.  As the length of the CNT increases, the thermal 

conductivity will increase as the length approaches the CNT’s MFP—as the CNT 

becomes longer, more phonon wavelengths can participate in the thermal transport.  The 

diameter of the CNT is related to the chirality, because larger chiralities typically lead to 

larger diameters; although, the larger diameter leads to increased conductance the thermal 

conductivity will remain independent of that fact.   
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CHAPTER II  

 

LITERATURE REVIEW 

 

Thermal Conductivity of Individual Carbon Nanotubes 

 Carbon nanotubes have shown a range of thermal conductivity values at room 

temperature (Table 1).  Early experiments used samples of CNT mats, which would show 

a lower thermal conductivity than an individual CNT due to the interaction between the 

multiple CNTs [13–15].  Experiments on SWNT mats showed a thermal conductivity of 

35 W/m/K at room temperature when corrected for the sample’s low density [13].  

Measurements of MWNT films had a thermal conductivity of 15 W/m/K; the MWNTs 

were estimated to have a thermal conductivity of 200 W/m/K when corrected for volume 

[14].  Hone et al. measured thermal conductivity parallel to the axis of a SWNT mat to 

have a thermal conductivity of ~225 W/m/K [15].  Using measurement devices that 

suspend the CNT, thermal conductance was measured for individual CNTs and thermal 

conductivity estimates were consistently shown to be well over 1000 W/m/K.  Kim et al. 

determined thermal conductivity for an individual MWNT with a diameter of 14 nm was 

~3000 W/m/K [16].  A thermal conductivity of ~2000 W/m/K was measured by Fujii et 

al. using a CNT with a diameter of 9.8 nm [17].  Thermal conductivity was shown to 

increase with decreasing diameter.  Thermal conductivity for SWNT was measured as 

3000 W/m/K for a 3 nm diameter by Yu et al. [18].  Single-walled CNTs were measured 

to have 3500 W/m/K by Pop et al. [19].  Small et al. measured thermal conductivity of 

MWNT on a microfabricted suspended device to be >3000 W/m/K [20].  When using the  
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 Table 1 Thermal conductivities of CNT samples 
Sample Length (nm) Measurement 

Method 
Thermal 

conductivity at 
300 K 

(W/m/K) 

Reference 

SWNT mat 2x106 Comparative: 
constantan rod 

0.7 (35 
corrected for 

density) 

[13], [23] 

(10,10) SWNT 1 Equilibrium 
MD 

6600 [25] 

(10,10) SWNT <50 Equilibrium 
MD 

2980 [26] 

Magnetically 
aligned bulk 
SWNT 

5x103 Comparative: 
constantan rod 

~225 [15] 

MWNT 2.5x103 Microfabricated 
suspended 

device 

~3000 [16], [27] 

(10,10) SWNT 15.1 - 21.1 NEMD ~1500 [12] 
MWNT films 10 - 50x103 Pulsed 

photothermal 
reflectance 

~15 (200 
corrected for 

volume) 

[14] 

(10,10) SWNT ~400 NEMD ~300 [28] 
MWNT 2x106 Microfabricated 

suspended 
device 

>3000 [20] 

(10,10) SWNT <50 Homogenous 
nonequilbirum 
Green-Kubo 

~2000 [29] 

(5,5) SWNT 10.8 NEMD 800 [30] 
Individual CNT 3.7x103 Sample-

attached T-type 
nanosensor 

>2000 [17] 

SWNT 2.76x103 Microfabricated 
suspended 

device 

3000 [18] 

MWNT ~1x103 2-point 3ω 830 [21] 
(10,10) SWNT ~40 Equilibirum 

MD: Green-
Kubo 

~1635 [31] 

SWNT 2.6x103 Direct self-
heating 

3500 [19] 

MWNT 1.4x103 4-point 3ω 300 [22] 
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3ω method, Choi et al. found one MWNT sample to have 830 W/m/K [21].  Thermal 

conductivity of 300 W/m/K for a MWNT was measured by four-point 3ω method [22].  

Using a four pad setup in the 3ω method improves the accuracy of the measurement, 

because contact resistance can be eliminated.  The lower measurement by Choi et al. 

when using the improved technique most probably arises from the samples, since the 

two-point 3ω method used a MWNT with a diameter ~40 nm and the four-point 3ω 

method used a MWNT with a diameter ~20 nm.  All the measurements have CNTs that 

are at least several microns long, yet thermal conductivities at room temperature are 

exceptionally large.  This result is an indication that the phonon MFP is quite large for 

CNTs. 

 Measuring the thermal conductivity of individual CNTs has received much 

attention over the last decade.  Initially, a comparative method using a constantan rod was 

used to measure bulk SWNT samples [13], [15], [23], [24].  Temperatures from 8-350 K 

were used by Hone et al. to measure SWNT mats.  Later Hone et al. measured the 

thermal conductivity of aligned SWNT mats.  Llaguno et al. measured thermal 

conductivity for bulk SWNTs from 10-100 K.  Another technique used to measure bulk 

samples, the pulsed photothermal reflectance technique, was used by Yang et al. to 

measure thermal conductivity in MWNT films [14].  The development of suspended 

microfabricated devices has made possible measuring thermal transport in a single CNT 

free from substrate influence [16], [18], [19].  A microfabricated suspended heater device 

is used to measure thermal conductance from 8-370 K of an individual MWNT and from 

100-300 K for a SWNT [16], [18], [20].  Using a sample-attached T-type nanosensor, 

Fujii et al. measured temperature dependence from 100-320 K, as well as diameter 
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dependence [17].  Another temperature dependent study of SWNTs employs direct self-

heating for 300-800 K.  Choi et al. used the 3ω method to measure thermal conductivity 

on individual MWNTs [21].  Using a four-point 3ω method, Choi et al. calculate thermal 

conductivity for an individual MWNT [22].  Length-dependent thermal conductivity was 

measured for an individual SWNT using a four-pad 3ω method [32].   

 The thermal conductivity of a CNT is estimated because only thermal 

conductance can be determined from an experiment or simulation.  Kim et al. measured 

the thermal conductance of a MWNT and estimated a thermal conductivity of 

approximately 3000 W/m/K at 300 K [16].  In 2005 Yu et al. measured a SWNT’s 

thermal conductance and estimated the room temperature thermal conductivity could 

range from 3000 W/m/K if the SWNT’s diameter is 1 nm to 10000 W/m/K if the 

diameter is 3 nm [18].  Each of these studies measure thermal conductance rather than 

thermal conductivity; therefore, thermal conductivity is based on an estimation of the 

CNT’s cross-sectional area.  The area of a CNT, however, is ambiguous since its cross-

sectional area is a ring with the thickness of a carbon atom.  Hone et al. used a cross-

sectional area of a tube in a bundle as 2.5 nm2.  A 1 Å thick cylinder was used by Che et 

al. [26].  A ring with thickness 3.4 Å is the van der Waals thickness [12], [28]; in 

contrast, Zhang and Li used a ring thickness of 1.44 Å [30].  The result of using different 

cross-section areas is yielding different estimates for thermal conductivity.  A large cross-

sectional area, such as a circle, will yield a smaller thermal conductivity than a smaller 

cross-sectional area estimate, like a ring.  The influence on the thermal conductivity 

results, however, is minimal if the same cross-sectional area is used for all data 

considered.  Needless to say when comparing thermal conductivity estimates from 
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multiple studies the cross-sectional area used by the investigators must be taken into 

consideration, since it will give an idea if the value is a high or low estimate.   

 The thermal conductivity of CNTs exhibits temperature dependence.  At 100 K, 

thermal conductivities of SWNTs could be as high as 37000 W/m/K [25].  Thermal 

conductivity increases with increasing temperature to a peak around 300 K [17].  Pop et 

al. measured SWNTs for high temperatures (300-800 K) and found thermal conductivity 

decreases as temperatures rise above 300 K; they estimated a value of almost 1000 

W/m/K for 800 K [19].  Similarly, each study reported the maximum thermal 

conductivity at room temperature after which the thermal conductivity declines. Also, 

each study reported similar room temperature thermal conductivities for both SWNT and 

MWNT; the diameters of the SWNTs were approximately 1-2 nm and the diameter for 

the MWNT was about 14 nm.   

 The thermal conductivities of CNTs can be influenced by several factors.  The 

temperature dependence of thermal conductivity is affected by the heat capacity and 

phonon MFP—at low temperatures the MFP is long and thermal conductivity follows the 

heat capacity; but at higher temperatures, where the heat capacity becomes constant, 

thermal conductivity is governed by the umklapp scattering processes, which shorten the 

MFP and decreases thermal conductivity [25].  Specifically, the MFP is made up of the 

static MFP and umklapp MFP where at low temperatures the MFP equals the static MFP 

and as the temperature increases the umklapp MFP increases and thermal conductivity 

decreases [16].  The high thermal conductivity observed when measuring individual 

CNTs can be influenced by the lost of heat to the surroundings, which cause an 

overestimation of thermal conductivity [14].  Multiwalled CNTs may exhibit lower 
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thermal conductivities due to interaction between the tubes and, in the case of 

experiments, the presence of defects within the CNTs.  The chirality can also cause 

differences in thermal conductivities of CNTs that have the same diameter.  As the 

chirality decreases, the strain on the sigma bonds reduces the MFP of the CNT [12], [29]; 

however, Zhang and Li concluded thermal conductivity in CNTs is insensitive to 

chirality—they did not consider CNTs that were of equal radii, but different chiralities 

[30].  Cao et al. studied the affect of chirality in zigzag SWNTs—they showed that small 

diameters had higher conductivities and there was a peak temperature after which thermal 

conductivity would decrease [33], [34].   

 Molecular dynamics simulations have seen extensive use in the simulation of 

SWNTs’ thermal conductivity [12], [25], [26], [31].  Simulations types include NEMD 

methods using heat baths, as well as equilibrium MD methods based on the Green-Kubo 

expression.  Another simulation is the homogenous nonequilibrium Green-Kubo 

(HNEGK) method employed by Zhang et al. [29] 

 Similar to studies of experimental measurements of CNTs, theoretical studies 

have produced large thermal conductivity predictions.  Using NEMD, Berber et al. 

estimated a room temperature thermal conductivity of 6600 W/m/K [25].  Che et al. used 

equilibrium MD, to estimate a thermal conductivity of 2980 W/m/K [26].  Thermal 

conductivity for (5,5) SWNT was estimated to be ~2250 W/m/K and ~1500 W/m/K for 

(10,10) SWNT by Osman and Srivstava [12].  The room temperature estimation by 

Maruyama averaged 300 W/m/K for (10,10) SWNTs and appeared to be independent of 

length [28].  The (5,5) SWNT studied reached a thermal conductivity of ~490 W/m/K at 

~200nm.  The simulation of Zhang et al. showed a (10,10) SWNT thermal conductivity 
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of ~2200 W/m/K [29].  Using equilibrium MD with the Green-Kubo formulation, 

Grujicic et al. estimated thermal conductivity to be ~1635 W/m/K [31].  The variations 

can be attributed to the use of different size simulations—with some systems containing 

only 400 atoms and others up to 6400 [25], [26].   

 Studies for length-dependent thermal conductivity have been conducted for 

CNTs.  Many theoretical studies have shown thermal conductivity to converge at short 

lengths.  Using lengths <50 nm, Che et al. show that thermal conductivity of a (10,10) 

SWNT converges to 2980 W/m/K [26].  Padgett and Brenner found thermal conductivity 

converged at <300 nm at a thermal conductivity of ~350 W/m/K [35].  Grujicic et al. 

found thermal conductivity converges for the (10,10) SWNT at a length of ~40 nm [31].  

The convergence of the thermal conductivity implies that thermal transport has 

transitioned from purely ballistic to diffusive; however, other studies show thermal 

conductivity growing rapidly as length increases.  For lengths up to 200 nm, Maruyama 

used NEMD simulations to show (5,5) SWNTs had a divergent thermal conductivity as 

length increases, but (10,10) SWNTs thermal conductivity was essentially non-divergent 

[28].  Thermal conductivity of SWNT’s divergence is ~Lβ as length L increases [28], 

[30]. The divergence of thermal conductivity with length was studied by Zhang and Li 

who found the divergence power parameter β decreases with an increasing CNT radius 

and also with increasing temperature indicating less divergence with increases scattering 

[30].  Maruyama speculated the limited motion of smaller radius CNTs contribute to the 

divergence [28].  Though length-dependent measurements of individual CNTs tends to be 

cumbersome, some experimental investigations have been conducted to explore the 

length-dependent behavior of CNTs.  Yang et al. measured MWNT films using pulsed 
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photothermal reflectance and found the thermal conductivity of the films to be 

independent of the length of the MWNTs [14].  A length-dependent experiment was 

performed by Wang et al. using a four-pad 3ω method to measure thermal conductivity 

from 0.5-7 μm [32].  Thermal conductivity multiplied by the tube diameter was shown to 

increase with thermal conductivity before appearing to converge.  The difference in the 

length scales between the theoretical and experimental studies suggests the short length 

simulations do not fully describe the thermal conductivity behavior of the CNTs. 

   

 Thermal Conductivity in Double-Wall Carbon Nanotubes 
  
 No MD simulations studies of thermal conductivity of DWNTs have been 

identified in the literature at this point in time.  Of the DWNT MD simulations that do 

exist, the structural and mechanical properties of the DWNTs are the focus of the study.  

Saito et al. studied DWNTs to determine optimum geometries for various inner and outer 

diameters [36].  They concluded the minimum energy geometry depends on the interwall 

distance, a conclusion found by others as well [37].  Some MD simulations focus on the 

reaction of structures in the presence of other molecules [38].  Molecular dynamics 

simulations are used to estimate mechanical properties like Young’s modulus of DWNTs 

[39].  An MD simulation of the length-dependent thermal conductivity of DWNTs will be 

a major contribution to theoretical studies of CNTs. 

 

Thermal Conductivity of Functionalized Carbon Nanotubes 

 Using CNTs in composite materials to improve thermal properties have been 

studied in many aspects.  Carbon nanotubes have a large aspect ratio and thermal 
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conductivity of 3000 W/m/K at 300 K.  These advantageous properties make CNTs 

desirable filler for composite materials.  Impediments to achieving the desired thermally-

enhanced composite material exists due to resistance at the interface of the CNT and 

matrix material and the difficulty of enhancing mechanical and thermal properties 

simultaneously.   The studies using CNTs as thermal enhancers are inconsistent in 

demonstrating an improved composite material (Table 2).   

 Table 2 Thermal conductivity of CNTs in Composite Applications 
Sample Loading Method RT Thermal 

conductivity 
(W/m/K) 

Reference 

MWNT in poly 
(α-olefin) oil 

1 vol% Transient hot 
wire 

0.3765 [40] 

SWNT-epoxy 
composite 

1 wt% Comparative: 
constantan rods 

~0.5 [41] 

Nitric acid 
treated MWNT 
in decene 

1 vol% Transient hot 
wire 

0.1674 [42] 

(5,5) SWNT Up to 50% 14C 
isotope 

impurities 

NEMD ~350 [30] 

(10,10) SWNT 10% 
functionalized 
with phenyl 

groups 

NEMD ~25 [35] 

 
 Carbon nanotubes have produced enhancements to the thermal conductivity of the 

matrix material but not to the full potential of predicted CNT thermal conductivity.  

Though Choi et al. show a 160% enhancement in their nanotube-in-oil suspension with 

only 1 vol% of MWNTs added, the thermal conductivity of the oil is enhanced from 

0.1448 W/m/K to 0.3765 W/m/K [40].  Acoustic impedance mismatch at the interface of 

the liquid and solid prevents larger enhancement [40].  The results the treated MWNTs of 

Xie et al. do not demonstrate increased enhancement, but rather produces less 

enhancement.  Similar results are shown in composites, Biercuk et al. showed an increase 
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in thermal conductivity of the epoxy resin from ~0.2 W/m/K at 300 K to ~0.5 W/m/K 

[41].   

 Suspensions were the first systems to provide insight on thermal conductivity 

with CNT fillers.  Choi et al. produced a nanotube-in-oil suspension using MWNTs and 

found the effective thermal conductivity of the oil increased with a small volume fraction 

of MWNTs [40].  They measured enhancement of the oil (160%) greater than any 

enhancement predicted by theoretical models of solid/liquid suspensions (10%).  

Suspensions of pristine and treated MWNTs in distilled water, ethylene glycol, and 

decene were measured by Xie et al. [42].  The surfaces on the MWNTs were treated with 

nitric acid.  For the treated MWNTs, they demonstrated enhancements of 7%, 12.7%, and 

19.6% for distilled water, ethylene glycol, and decene, respectively.  Biercuk et al. 

measured a 125% enhancement with 1 wt% of SWNTs added to an epoxy resin.  Thermal 

conductivity enhancement is attributed to ballistic heat conduction and to the large aspect 

ratio [40], [41].  When nanotubes are surface treated, thermal conductivity in suspensions 

is governed by matching the frequency of phonons at the interface.  For instance high 

frequencies in the CNT must be converted to lower frequencies before energy can be 

exchanged with the surrounding medium [43].    

 The success of CNT suspensions were followed by the study of solid CNT-based 

composites.  Several experimental studies use CNTs to thermally enhance the thermal 

properties of epoxy resins.  Biercuk et al. studied the thermal enhancement of single-

walled CNTs (SWNTs) in an Epon 862 epoxy resin [41].  With only 1 wt% of SWNTs, 

the result was a 125% enhancement relative to the pristine epoxy; however, the thermal 

conductivity of the composite was ~0.5 W/m/K, since the pristine epoxy’s thermal 
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conductivity was ~0.2 W/m/K.  In addition to SWNTs, Moisala et al. also used 

multiwalled CNTs (MWNTs) in their study to enhance bisphenol-A resin [44].  Use of 

0.1-0.5 wt% of SWNTs reduced the thermal conductivity of the pristine resin from ~0.25 

W/m/K to ~0.23 W/m/K.  The MWNTs, on the other hand, increased thermal 

conductivity to ~0.29 W/m/K.   In both studies the effective thermal conductivity is 

below theoretical predictions [45].  Biercuk et al. did not yield any conclusions on what 

mechanisms cause the SWNTs to yield a thermal enhancement.  The only conclusion 

related to thermal conductivity was to mention the large aspect ratio and nanoscale 

diameter make SWNTs preferable over carbon fibers, because SWNTs can form an 

extensive network at a lower weight percent; however, this attribute is usually more 

applicable to electrical conductivity, rather than thermal conductivity because electrons 

travel along low resistance pathways whereas phonons travel through atomic vibrations.  

Moisala et al. concluded the decrease in thermal conductivity when using SWNTs was 

caused by either a large interface resistance due to poor phonon coupling between the 

SWNT and the polymer or dampening of the phonons of the SWNTs.  In the case of 

phonon dampening, the MWNTs could sustain a higher thermal conductivity because the 

inner walls could continue to carry phonons.  An approach to address both phonon 

dampening and interfacial resistance is functionalizing CNTs. 

 Molecular dynamics simulations were used to investigate the influence of surface 

anomalies on the thermal conductivity of SWNTs.  Any disturbance in the CNT’s 

topology results in a decrease in thermal conductivity.  Che et al. completed a study on 

the affects of vacancies and defects on the thermal conductivity of a SWNT.  Vacancies 

were found to cause more degradation in the thermal conductivity than defects; from the 
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simulations, the lowest observed thermal conductivity was 400 W/m/K for a 0.01 

vacancy concentration and 1500 W/m/K for a 2.5 defect concentration.  Che et al. 

concluded that defects preserve the general structure of the SWNT and bonding 

characteristics; however, vacancies presented no more of an influence on a one-

dimensional CNT than would have been present on a three-dimensional diamond [26].  

Padgett and Brenner extended the study of surface defects’ influence on SWNT’s thermal 

conductivity by adding covalently bonded phenyl rings [35].  At ~125 nm, a (10,10) 

SWNT with 0.25% of its atoms functionalized with phenyl groups shows a decrease in 

thermal conductivity of 100 W/m/K; at 10% functionalization at the same length thermal 

conductivity is only ~25 W/m/K [35].  Concluding, the MFP of the phonons was reduced 

when only 1% of the CNT’s atom was functionalized and resulted in a decrease of 

thermal conductivity by a factor of 3.  Studies have shown that thermal conductivity 

decreases when CNTs have impurity or functionalizing atoms included.  Zhang and Li 

used NEMD to simulate the influence 14C isotope impurity has on the thermal 

conductivity of (5,5) SWNTs [30].  As the percentage 14C isotopes is increased in the 

(5,5) SWNT, thermal conductivity decreases from a maximum of 800 W/m/K when there 

are zero impurities to ~300 W/m/K when 50% of the carbon atoms are 14C isotopes.  

Additionally, over all temperatures studied a 40% 14C SWNT has thermal conductivity 

that is at most 60% of the thermal conductivity of a pristine SWNT.  The impurities cause 

the phonon-phonon scattering that shortens the MFP of the CNT.   

 Functionalization of CNTs in experimental studies has shown more consistent 

results.  Gojny et al. studied nanotube-based composites using SWNTs and 

functionalized and unfunctionalized DWNTs and MWNTs [46].  Their results indicate 

21 



 

thermal conductivity is dependent on phonon mechanisms, since increasing the CNT 

loading improves electrical conductivity—which is based on a percolation mechanism—

but not thermal conductivity.  Similar to Biercuk et al., MWNTs outperformed SWNTs; 

additionally, DWNTs yielded a higher thermal conductivity as well.  When the DWNTs 

and MWNTs are functionalized with amino groups, thermal conductivity is lower than 

the unfunctionalized CNTs.  The conclusion is a weaker interaction between the CNT and 

the matrix allows the CNT to transport more efficiently because the coupling is weaker.  

Minimizing the coupling between the CNT and matrix reduces phonon dampening in the 

CNT, which reduces the CNT’s thermal conductivity.  Like previous studies, the 

composites’ thermal conductivities are not largely improved over that of the pristine 

resin.  Understanding the CNT’s response to the matrix interaction is essential to 

engineering thermally-enhanced composites.   

 
Thermal Conductivity in Graphene 

 Graphene, which is an unrolled SWNT, has been measured and found to have 

thermal conductivities that are larger than CNTs.  Balandin et al. used confocal micro-

Raman spectroscopy to make the first measurement of suspended single-layer graphene 

[47].  Similar to experiments with CNTs, the acoustic phonons are found to account for 

the majority of the contribution to thermal conductivity.  The Klemens’ approximation 

was used by Nika et al. to predict thermal conductivity in graphene flakes [48–51].  They 

showed that various Gruneisen parameters, a measure of the effect of changing a crystal’s 

volume has on vibrational properties [52], influence thermal conductivity in the graphene 

flakes of different lengths and temperatures.  The long phonon mean free path in 

graphene is attributed with the large thermal conductivities, since boundary scattering 
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dominates when the width of graphene is comparable to the mean free path.  A similar 

result is found by Hu et al. while studying thermal conductivity and rectification in 

graphene nanoribbons [53].  Graphene nanoribbons with a zigzag chirality showed higher 

thermal conductivities than armchair; symmetrical and defect free graphene nanoribbons 

had thermal conductivities higher than the alternative.  Different phonon scattering rates 

(and by extension mean free paths) yield the various thermal conductivities found in the 

different graphene nanoribbon models.  Graphene nanorribon thermal conductivity was 

found to have sensitivity to edge shape, width, and strain by Guo et al. [54].   

 
Table 3 Room Temperature Thermal Conductivity in Graphene 

Sample Length Method Thermal 
Conductivity 
(W/m/K) 

Reference 

Single layer 
graphene 

~3 μm Confocal 
micro-Raman 
spectroscopy 

5300 [47] 

Graphite 
monolayer 

1 nm Equilibrium 
MD 

~6600 [25] 

Single layer 
graphene 

1-5 μm Confocal 
micro-Raman 
spectroscopy 

3080-5150 [55]  

Graphene 
flakes 

1-50 μm Klemens 
approximation 
[48], [49] 

~8500 [50], [51] 

Graphene 
nanoribbons 

~5 nm MD ~2000 [53] 

Graphene 
nanoribbons 
(armchair) 

11 nm NEMD 218 [54] 
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CHAPTER III  

 

MOLECULAR DYNAMICS 

 

 Molecular dynamics (MD) simulations provide the ability to understand materials 

at a length scale where direct measurement is often difficult.  Molecular dynamics 

simulations are a method of analyzing the behavior of a material at the atomistic scale.  

Molecular dynamics simulations are numerical computations of the estimated path of an 

atom or molecule.  Classical MD simulations are based on Newton’s second law of 

motion and an interatomic potential.  If the mass and the interatomic potential are known, 

then the next position in time can be determined.  Results of the calculated trajectory can 

be analyzed to determine properties, like thermal conductivity [4].   

 

Newtonian Equations of Motion  

 The trajectory of an atom is estimated by solving Newton’s second law of motion.  

This simple equation becomes a complex computation since each atom’s equation of 

motion must be solved.  The general Newtonian equation of motion for a system of N 

atoms is shown 
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where Fij is the force exerted on atom i caused by atom j and mi and ri are the mass and 

position of atom i, respectively.  A limitation of the Newtonian equation is it requires 

additional equations to describe rotational motion [4].  By using the Lagrangian or 
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Hamiltonian equations of motion, all the degrees of freedom of an atom’s trajectory can 

be obtained in one vector of generalized coordinates, r.  The system’s Lagrangian is 

defined as the difference of the kinetic energy and potential energy, 

)(),(),,( rrrrr UKtL −= &&     (3.2) 

here is the time derivative of r or the generalized velocity.  The Lagrange equation of 

motion is 
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the subscript i denotes the generalized coordinates for each atom.  Similarly, the 

Hamiltonian describes the energy of the system; however, it describes the total energy of 

the system 

)()(),,( rppr UKtH +=     (3.4) 

the Hamiltonian is a function of the generalized coordinate vector r and a generalized 

momentum p.  The generalized momentum is derived from the Lagrangian by 

differentiating with respect to the generalized velocity 
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the Hamilton equations of motion are  

i
i

H
r

p
∂
∂

−=&  
i

i d
H
p

r ∂
=&      (3.6) 

Any of the three equations of motion can be used to describe the atom’s trajectory. 
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Interatomic Potentials 

 The most crucial aspect of a MD simulation is the interatomic potential.  The 

interatomic potential describes the forces that act between atoms.  In order to produce 

reasonable results, the interatomic potential must give an accurate description of the 

interaction in the system.  The potentials, however, are limited to being only as good as 

the data (either from experiments or ab initio simulations) upon which they are based.  

Molecular dynamics simulations of atoms have potentials that can be categorized as pair, 

many-body, and force fields.  The simplest interatomic potential is one describing the 

interaction between two atoms—this type of potential is known as a pair potential.  

Examples of pair potentials include Coulomb’s, Newton’s law of universal gravitation, 

Lennard-Jones, and Morse potentials; the former two are outside the scope of this work.  

The Lennard-Jones and Morse potentials are often used in MD simulations.  

 The Lennard-Jones potential is used in MD simulations to describe non-bonded 

interactions.  The Lennard-Jones potential is defined 

612
ijij

ij r
A

r
BU −=       (3.7) 

where rij is the distance between two atoms i and j, , and  [7], [4].  

On the right-hand side, the first term is a repulsive potential, which acts when the two 

atoms’ nuclei or inner-shell electrons begin overlapping [4]; the second term is an 

attractive potential caused by dipole moments that the atoms induce in one another [7].  

The Lennard-Jones potential is useful for describing the interaction of crystals of noble 

gases, like argon.  In noble gases the interactions are non-bonded, since the outer shells 

are completely filled.  The forces between the atoms are governed by van der Waals 

forces.  These are same forces that occur between layers of graphite and the walls of 

64εσ=A 124εσ=B
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CNTs.; therefore, the Lennard-Jones potential is useful in describing the interaction 

between the walls of DWNTs and between functionalizing united atoms groups and the 

CNT’s exterior, because these are non-bonded interactions.  The Lennard-Jones potential, 

however, is insufficient to describe the interactions associated with covalent bonds. 

 In the scope of this work, interatomic potentials that consider the how the 

interactions between two atoms are influenced by other atoms are many-body potentials 

and forcefields.  With carbon systems like graphite, diamond, and nanotubes, the 

interaction between two carbon atoms depends not only on the distance between the 

atoms, but also on the atoms surrounding the pair.  Several potentials exist that describe 

the interaction in carbon systems [56]; however, these potentials are largely based on 

mechanical properties such as Young’s modulus, rather than thermal properties.  Two 

many-body potentials that describe the covalent bonding present with structures 

containing carbon are the Tersoff potential and the reactive empirical bond-order (REBO) 

potential.  The Tersoff potential is the first potential that considered bond-order and 

allowed for bonds to be formed and broken during the simulation, which is useful in 

studying chemical reactions, and it considers the bond angle between atoms i, j, and k 

[57], [58].  The form of the Tersoff potential gives the total energy of the system, E, 

ij
i

i VEE
2
1

==∑       (3.8) 

where Ei is the site energy and Vij is the bond energy defined as 

)]()()[( ijAijijRijijCij rfbrfarfV +=     (3.9) 

the functions fC, fR, and fA represent a smooth cutoff, repulsive pair potential, and an 

attractive pair potential, respectively; the function aij consists of range-limiting terms and 

bij is a measure of the bond order [58].  The REBO potential is a type of Tersoff potential 
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that is especially good at modeling the interactions in hydrocarbons and graphite [59]; 

however, the REBO potential is only good for short interactions that are intramolecular.  

The REBO potential was extended to include Lennard-Jones terms to account for 

intermolecular interactions, as well as torsional interactions [57].  The potential is called 

adaptive intermolecular REBO (AIREBO) potential, which is defined 

torsLJREBO EEEE ++=      (3.10) 

where, 
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the first term on the right-hand side is the repulsive pair potential and the second, 

attractive; the torsional term of Eqn. (2.10) defines the dihedral angle determined by 

atoms i, j, k, and l 

)()()()( ijkl
tors

jljlijijkiki
tors
ijkl VrwrwrwE ω=     (3.12) 

where 

kijlkijlkijlkijl
torsV εωεω

10
1)2/(cos

405
256)( 10 −=     (3.13) 

 The covalent bonds of CNTs use the Tersoff potential and Lennard-Jones 

potentials model the van der Waals forces between the layers of DWNTs and the united 

atom models.  To study transport properties interatomic potentials that contain 

anahrmonicities are needed, thermal conductivity cannot be studied using a harmonic 

potential because scattering will not occur.   
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Molecular Dynamics Simulation Methods 

 Thermal transport properties can be determined by using MD simulations.  Two 

simulation methods exist for using MD simulations to find thermal information—

nonequilibrium and equilibrium dynamics.  A nonequilibrium MD simulation method 

(NEMD) can be used to understand thermal transport processes; however, when using an 

equilibrium MD (EMD) simulation method only thermal properties can be determined.  

A NEMD simulation is typically faster than an EMD simulation, since the EMD 

simulation relies on calculation of a computationally expensive autocorrelation function; 

however, NEMD simulations can have inconsistencies when defining local thermal 

equilibrium, temperature distributions, and boundary conditions in systems with long 

mean free paths [4]. 

 Two methods are popular for imposing nonequilibrium conditions on a system.  

One method is to impose a temperature gradient and calculate the heat flux—the other 

imposes a heat flux and calculates the temperature gradient sometimes called a reverse 

NEMD (RNEMD) simulation.  Using reservoirs to control the temperature requires a 

large temperature difference, but by using the constant heat flux method this issue can be 

circumvented [4].  One implementation of a RNEMD simulation is to add and subtract a 

heat flux from defined hot and cold regions of the system, respectively.  The heat flux is 

added (or subtracted) by rescaling the velocity in that region.  By adding and subtracting 

heat fluxes in the hot and cold regions equally, a temperature gradient is established in 

the system.  Another RNEMD simulation method introduced by Muller-Plathe, imposes a 

constant heat flux by exchanging kinetic energy between the hot and cold regions [60], 

[61].  The velocity vector of the hottest atom in the cold region is exchanged with that of 
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the coldest atom in the hot region—the atoms must be of the same mass to conserve 

linear momentum.  The heat flux is known from the amount of kinetic energy exchanged 

during the simulation time of the system; what results for the exchange of energy is a 

temperature gradient between the hot and cold regions. 

 Alternative to the nonequilibrium methods of MD are equilibrium methods.  

There is no temperature difference applied to the system in EMD simulation, but rather 

the history of the atoms’ movement in the system is used to determine thermal properties.  

The Green-Kubo formula can be used to find thermal conductivity directly 
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where V is the volume of the system,  kB is the Boltzmann constant, and JQ is the heat 

current [4].  The term in the integral is the heat current autocorrelation function, which is 

a time-delayed comparison of the heat current to itself.  The EMD simulation tend to be 

more computationally expensive than NEMD simulation methods, since the heat current 

must be calculated for a many time steps for all the atoms.  Since length-dependent 

thermal conductivity experiments will be performed, the use of EMD simulations is a less 

desirable method than the NEMD simulation methods. 
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CHAPTER IV  

 

SIMULATION METHODS 

 

 Molecular dynamics (MD) simulations of CNTs are performed to predict how 

thermal transport is affected by non-bonded interactions.  Types of CNTs studied include 

single-wall CNTs (SWNTs), double-wall CNTs (DWNTs), and functionalized SWNTs 

and DWNTs.  Using the Tersoff and Lennard-Jones potentials, simulations are performed 

using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 

distributed by Sandia National Labs [62].  Nonequilibrium MD (NEMD) and wave 

packet simulations are used to gather thermal conductivity and thermal transport data.   

 

Models of Carbon Nanotubes 

 Carbon nanotube coordinates used in the simulation are generated using 

TubeGen.  TubeGen is able to produce a variety of molecular nanotubes; TubeGen has 

the flexibility to generate the coordinates of not only carbon nanotubes, but also other 

molecules like boron nitride [63].  Based on the desired chirality, TubeGen yields a 

tubular unit cell.  Nanotubes with large chiral vectors have unit cells containing more 

atoms and larger diameters.  To achieve a CNT of the desired length, the unit cell is 

replicated along the axial direction (z-axis); the correct number of unit cells to replicate 

can be obtained by dividing the length of the CNT by the length of the unit cell (~ 0.1 

nm).  Table 4 shows the chiralites investigated and their properties; the lengths are 

studied for a range of 25 nm to 4 μm. 
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Table 4 Characteristics of CNTs studied. 
Chirality Diameter (nm) Atoms in Unit Cell 

(5,5) 0.7 20 
(10,10) 1.4 40 
(19,10) 2.0 868 
(37,37) 5.0 148 
(80,80) 10.9 320 

 
 When using TubeGen it is important to set ample gutter spacing to obtain the 

correct atom coordinates; otherwise, atoms that are outside of the limits set by the gutter 

will be reflected back inside the box resulting not in a tube, but rather disconnected arcs 

(Figure 5). 

 
Figure 5 An example of a disconnected CNT generated by TubeGen when the gutter size 

is not adequate. 
 
The TubeGen coordinate file is in .xyz format, which cannot be used directly by 

LAMMPS.  An example TubeGen input script and partial output file can be found in 

Appendix A along with the LAMMPS formatted coordinates.  An example of a typical 

SWNT generated by TubeGen is shown in Figure 6. 
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Figure 6 A chirality (10,10) CNT generated by the TubeGen coordinate generator. 

 
 From the initial SWNTs more complex models can be made.  To create DWNTs, 

SWNTs are generated and then merged together (Figure 7).  The chiralities that yields the  

 

Figure 7 A typical (10,10)@(19,10) DWNT. 
 
lowest energy DWNT is based on the diameter of the inner SWNT [37]; therefore, 

DWNTs with (10,10) and (19,10) SWNTs are utilized.  The interwall spacing of the 

DWNT is about 0.6 nm.  To differentiate the walls for LAMMPS, different atom types 
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are assigned to each SWNT; the DWNT then behaves with the appropriate interatomic 

interactions, which are discussed later.  This same procedure can be used to specify the 

atoms of the functionalized CNT model; where each new element is assigned an atom 

type number and the interatomic potentials are determined by the atom type.  The 

functionalized CNTs are functionalized randomly as a percentage of the number of atoms 

in the CNT (Table 5).  The functionalizing atoms are united atom models of a phenyl 

group. 

 
Table 5 Number of Functionalization Atoms for CNTs 

Percentage 200 nm SWNT 200 nm DWNT 
0.25% 81 120 

1% 324 470 
5% 1624 2352 

10% 3248 4704 
 

 

Figure 8 A phenyl group. 
 

 During the simulation, the interactions of the atoms in the simulation are 

governed by the interatomic potentials.  Choosing the appropriate potentials is of the 

utmost importance because the accuracy of the results is dependent upon them.  In the 

simulation of CNTs, the interatomic potentials that have been used are the Tersoff-

Brenner potential [26], [35]; both describe the covalent bond of C atoms.  The Lennard-

Jones potential is used to describe the van der Waals interaction between the walls of the 

DWNT and between the CNT and functionalizing groups, using values of 3.345 Å and 37 

K (4.8 meV) for σ and ε, respectively [64]. 
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Nonequilibrium Molecular Dynamics Simulation Parameters 

 At the beginning MD simulation, the CNT must be brought to an equilibrium 

state.  The coordinates given by TubeGen have the C atoms near their minimum energy 

position.  Energy minimization is performed in LAMMPS using the conjugate gradient 

method.  The velocity of the CNT is set such that the starting temperature is 300 K.  

Since all the energy is potential at the start, a NVE integrator in LAMMPS is used to 

relax the CNT, the total energy of the system comes to equilibrium in 200 ps.  Using a 

SWNT, a 1 fs time step is sufficient and the data can be sampled every 2000 time steps 

without losing information.  Periodic boundary conditions are applied in all directions. 

 Nonequilibrium MD methods can be implemented in LAMMPS through the use 

of fix commands.  The Muller-Plathe method is invoked by using fix thermal/conductivity 

to swap the kinetic energy in a group of atoms; fix heat applies a constant flux by 

rescaling the velocity of a group of atoms in specified time increments.  In both NEMD 

methods, the outputs result in the direct calculation of thermal conductance, rather than 

thermal conductivity; as mentioned previously, the cross-sectional area of a CNT is quite 

ambiguous.  An estimation of area for thermal conductivity is A=2πrΔr; this estimate 

eliminates the hollow center of the CNT, which does not conduct, and incorporates Δr, an 

interwall spacing of 0.6 nm as a thickness of the ring. 

 

Muller-Plathe Method 

 Thermal transport is simulated using a Muller-Plathe NEMD method.  The CNT 

is divided into 20 sections in the axial direction (z-axis); the end section is cold and the 
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middle section is hot.  Figure 9 is representative of the simulation’s setup.  The velocity 

of the atoms in one unit cell are exchanged every 15 fs for 1 ns; for example, the unit cell 

of a (10,10) CNT has 40 atoms.  The total kinetic energy swapped is recorded and a  

 
dz

Test Section

KE

 
Figure 9 A representation of the setup for Muller-Plathe NEMD method in LAMMPS. 
 
running average of the temperature in each section is calculated every 2.5 ps to find the 

temperature gradient.  Figure 10 shows a typical temperature profile that results from the 

Muller-Plathe method—it is V-shaped, since the hot section is in the middle of the 

system.  The discontinuity at the edge is due to the periodicity. 
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Figure 10 A typical temperature profile generated by the Muller-Plathe NEMD method. 
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Using the outputs from the Muller-Plathe method, the thermal conductance can be 

calculated using Fourier’s Law in the form 

x
T

t
KE

kA
swap

swapped

Δ
Δ
⋅=

2
      (4.1) 

where k is the thermal conductivity, A is the cross-sectional area, and tswap is the total time 

the kinetic energy swap is performed.  One-half of the swapped kinetic energy is used 

because the heat can flow in two directions. 

 

Heat Bath Method 

 Thermal transport is simulated using a constant energy flux NEMD method where 

the carbon nanotube is in contact with two external baths.  A temperature difference 

between the baths is achieved by subtracting and adding a constant energy rate of 10 

eV/ps every time step to the baths for 5 ns.  To prevent the evaporation of any C atoms, 

stationary walls are placed at the ends of the CNT/bath system—Figure 11 represents the 

simulation’s setup, which includes dividing the CNT into 20 sections in the longitudinal 

direction (z-axis).  

 

 
Figure 11 A representation of the setup for constant energy flux NEMD method in 

LAMMPS. 
 
A running average of the temperature in each region is calculated every 2.5 ps to find the 

temperature difference, which is represented in Figure 12. 

Test Section Wall 

dz +q-q 

Wall 
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Figure 12 A typical temperature profile generated by the constant energy flux NEMD 

method. 
 
From the outputs generated by the constant flux method, Fourier’s law takes the 

following form 

x
TqkA
Δ
Δ

=       (4.2) 

where q is the energy rate.  The error of the temperature gradient in both methods is 

calculated from the fluctuations of the temperature in the averaged bins over the time of 

the NEMD simulation. 

 Additionally for DWNTs, two alternative simulation setups were used.  One setup 

allows only one wall to have a temperature gradient applied and the other holds one wall 

stationary. 

 

Validation 

 The simulation setup for the Muller-Plathe NEMD method is compared to Padgett 

and Brenner [35] to validate the results of LAMMPS.  In their study of the influence of 
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chemisorption, Padgett and Brenner used the Muller-Plathe method to the find the 

thermal conductivity of a (10,10) SWNT as a function of length.  Using LAMMPS the 

simulation was run with their parameters.  The chosen interatomic potential was Tersoff 

and a time step of 0.25 fs was used.  The system was equilibrated at 300 K for 2.5 ps.  

The Muller-Plathe method was run for at least 100 ps while swapping the kinetic energy 

of 20 atoms every 15 fs.  Data is collected and averaged over every 2.5 ps.; the area used 

for the SWNT’s cross-section was a 3.4 Å thick ring.  The comparison of LAMMPS and 

Padgett and Brenner is shown in Figure 13.  The results from LAMMPS show the same 

trends as Padgett and Brenner’s results—which appear to be approaching a thermal 

conductivity limit as the length increases.  The divergence of the LAMMPS results from 

Padgett and Brenner can be attributed to the SWNT needing a longer time to equilibrate 

where the LAMMPS results are equilibrated for 200 ps, which is an order of magnitude 

larger than Padgett and Brenner.  The LAMMPS results are comparable to Padgett and 

Brenner’s data, thus it is valid as a simulator for CNTs. 
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Figure 13 Comparison of thermal conductivity versus length results for a (10,10) SWNT 

by the LAMMPS simulator to Padgett and Brenner’s 2004 study. 
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CHAPTER V  
 
 

RESULTS AND DISCUSSION 

 

Carbon nanotube thermal conductivity 

 Simulations were performed for SWNTs and DWNTs at various lengths from 25 

nm-1μm.  At 25 nm thermal conductivity for all CNTs studied is ~150 W/m/K; at 1 μm 

thermal conductivity ranges from ~1000 W/m/K for the DWNT to >1200 W/m/K for the 

(10,10) SWNT (Figure 14).  The results presented in Figure 14 show agreement with the 

(10,10) SWNT results of Padgett and Brenner [35] (Figure 13).  Both results are less than 

the values of other computational studies for similar lengths due to the use of the Tersoff 

potential [12], [26], [28].  The Tersoff potential overestimates anharmonicities in the 

potential and leads to an underestimation of thermal conductivity by ~1000 W/m/K when 

compared to experimental measurements [16], [18], [19], [65], [66].  Also the assumption 

of the cross-sectional area yields differences in the estimation of thermal conductivity as 

mentioned previously.  Nevertheless a trend similar to studies of MWNTs and SWNTs 

with small diameters is shown [16], [18], [19], since comparable thermal conductivities 

are calculated for SWNTs and DWNTs.  Unlike previous studies, thermal conductivities 

calculated for this study do not converge to a single value, but rather show a general 

increasing trend.  The increase implies that longer lengths introduce phonon modes of 

longer wavelengths that have a significant contribution to thermal conductivity.    

 Plotting the thermal conductivity versus length on a log-log scale is shown in 

Figure 15.  Similar to other studies, thermal conductivity in SWNTs is shown to diverge 

with increasing length [28], [30].  In 1D model calculations thermal conductivity, λ =  
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Figure 14 Thermal conductivity of (10,10) and (19,10) SWNTs and a (10,10)@(19,10) 

DWWNT for lengths from 25 nm to 1 μm. Also shown are the NEMD thermal 
conductivity of (10,10) SWNTs from other works [12], [28], [29].  

 
aLβ, and β values are ~0.4.  When fitting the value of β, trends of the results are in 

agreement with previous works where β increases as the diameter decreases. For the 

(10,10) and (19,10) SWNTs β=0.53 and 0.43, respectively.  The thermal conductivity of 

the SWNT, however, will eventually converge when the tube length is longer than the 

MFP.  Maruyama et al. speculated that the divergence can be attributed not only to the 

small length of SWNTs used, but also to the limited freedom of motion caused by the 

smaller diameter of the (5,5) SWNT compared to the (10,10) SWNT [28]; this hypothesis 

appears to be supported by Zhang and Li, who show a larger β at 300 K than at 800 K, 

since the higher temperature is an indication of more energy and therefore more motion 

in the CNT [30].  Another interpretation is that β is larger when phonon MFPs are longer.   
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(a) 

 
(b) 

Figure 15 Thermal conductivity versus length plotted on a log-log scale for a (a) (10,10) 
SWNT and (b) (19,10) SWNT.  The line is thermal conductivity λ ~ Lβ. 
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When SWNTs of different chiralities are compared, the average phonon MFP can be 

speculated to be longer in the smaller diameter SWNT, since the radial breathing modes 

will be smaller and result in fewer phonon-phonon interactions with longer wavelength 

phonon modes. 

 Subsequently, simulations were performed to limit the freedom of motion in the 

more to scattering than to thermal transport.  Removing or restricting these phonon 

CNTs.  Double-walled CNTs are modeled that have only one wall heated or only one 

wall moving, which is a unique method for isolating a particular vibrational motion and 

identifying the contribution of that motion to the thermal conductivity of a CNT.  Figure 

16 shows the variation of thermal conductivity in DWNTs when the heating scheme is 

manipulated.  When a single wall is heated and both walls are allowed to move, thermal 

conductivity does not deviate largely from the thermal conductivity of the DWNT in the 

original setup.  The suggestion is van der Waals forces are strong enough to cause the 

unheated wall to move in sync with the heated wall; however, the forces are too weak to 

cause significant scattering between the walls. Consequently, when one of the walls is 

held stationary, the motion of the other wall is significantly restricted because of the van 

der Waals forces. The thermal conductivity increases by ~50% in these alternative cases 

where one wall is stationary. This result agrees with the trend observed with carbon 

peapods [67], which showed thermal conductivities that were twice as large as a pristine 

SWNT.  Carbon peapods are SWNTs that have fullerenes on the inside.  Two 

mechanisms of energy transfer were attributed with the increased thermal conductivity: a 

low-frequency radial vibration coupling between the CNT and the fullerenes and 

collisions between fullerenes along the axis.  Some phonon mode interactions contribute 
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Figure 16 Thermal conductivity of DWNT using various heating schemes. 

Both walls are moving for the data represented by upside down triangles, but only the 
exterior wall is heated for the unfilled triangles and only the interior wall for the filled 

triangles.  In contrast, the diamonds have only one wall moving: only the exterior wall for

in t 

to contri  is held 

yields a low estimation of a modes’ contribution. Computing the mean square vibrational 

 
the unfilled diamonds and the interior wall only for the filled diamonds. 

 
teractions yield a higher thermal conductivity even though fewer phonon modes are lef

bute to thermal conductivity.  When either the interior or exterior wall

stationary, the DWNT behaves as a SWNT with restricted motion. A stationary interior 

wall restricts flexural modes.  Not only flexural modes, but also radial breathing modes 

are restricted when the exterior wall is stationary. Longitudinal modes are restricted by 

not allowing the LAMMPS’ NVE integrator to update coordinates along the z-axis.  This 

method is not an entirely perfect way of restricting modes, since the radial breathing and 

torsional modes also incorporate longitudinal motion, as well; however, the method 
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amplitudes of atomic motions verifies that vibrational motion is restricted.  The Cartesian 

coordinates of 25 nm CNTs are converted into cylindrical coordinates for the calculation.  

The mean square vibrational amplitude is defined 

[ ]∑
=

−=
N

i
rru

1

222

2
1     (5.1) 

 
where α denotes radial (ρ), azimuthal (θ), axial

ii ααα

 (z) directons and the brackets <…> 

indicate a time average.  Table 6 lists the amplitudes for CNTs with different vibrational 

mode restrictions. When none of the vibrational modes are restricted the mean-square 

vibrational amplitudes in the azimuthal direction is comparable for the SWNT and 

DWNT, as well as for the individual walls of the DWNT. This result is expected since the 

thermal conductivities are shown to be comparable.  The radial and axial directions of the 

SWNT and DWNT show differences, which can be attributed to the DWNT having more 

vibrations caused by the interaction betweens the walls.  The individual walls of the 

DWNT, however, show comparable amplitudes.  This result is also an indication that the 

walls of the DWNT move in sync. In contrast, when all modes except the torsional mode  

are restricted the mean-square vibrational amplitudes in the radial and axial directions 

decrease by nearly and order of magnitude; meanwhile, the mean-square vibrational 

amplitude in the azimuthal direction remains the dominant vibrational direction. Also, 

when the flexural mode is present the mean-square vibrational amplitudes are larger in 

every direction compared to when the flexural mode is restricted. The flexural mode, 

therefore, carries a lot of energy.  If the net change in the mean-square vibrational 

amplitudes is considered, then the presence of the flexural mode accounts for >80% of 

the amplitude increase. 
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Table 6. Mean-square Vibrational amplitudes for 25 nm CNTs with Various 

Torsional (T), and/or F
Combinations of Vibrational Modes [Longitudinal (L), Radial breathing (B), 

lexural (F)] 
 Vibrational Modes <u 2> (A2) <u 2> (rad2) <uz

2> (A2)
Present 

r θ

(10,10)SWNT L-B-T-F 0.060109 0.15209
DWNT  

 0.0014643
L-B-T-F 0.85755 0.093327 0.026269

Interior DWNT wall 
 wall  

all motion only  0.0011489 
ong.  0.084366 0.0017899

ly 0.0010928 
ong. 
ng.  

L-B-T-F 1.0662 0.097365 0.0286 
Exterior DWNT L-B-T-F 0.94116 0.10889 0.031191
Exterior w L-B-T 0.0022555 1.8541e-4
(10,10) SWNT w/no l B-T-F 0.14035 
Interior wall motion on L-T 0.044124 2.6239e-4
Exterior motion only w/no l B-T 0.0013686 0.0030953 2.3844e-4
Interior motion only w/no lo T 0.0012941 0.0431 2.1897e-4
 
 The variation of CNT thermal conductivity fro  

gure 17. A own, therm vit NT

m different combinations of 

phonon modes is presented in Fi s sh al conducti y in SW s is 

largely affected by the longitudinal and flexural modes. Thermal conductivity is less than 

the unrestricted DWNT when either the torsional mode or the torsional-radial breathing 

mode combination is considered. The torsional mode has a smaller thermal conductivity, 

because it is the only mode contributing. This result can be expected since in the 

Holland[68] and Callaway[69] models of lattice thermal conductivity the thermal 

conductivity is a sum of the thermal conductivity contributed by each phonon mode. In 

which case, the radial breathing mode is considered to not have an appreciable influence 

on thermal conductivity, since its inclusion with the torsional mode results in a thermal 

conductivity that is comparable to the torsional mode alone.  This result cannot be wholly 

contributed to the lack of the longitudinal motion within the breathing and torsional 

modes, because thermal conductivity for the longitudinal and torsional mode combination 

is comparable to the thermal conductivity of the longitudinal, torsional, and breathing 

mode combination. When the flexural mode is added to the torsional and radial breathing  
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Figure 17 Thermal conductivity is shown for the CNT when combinations of modes are 

restricted [70]. 
 
modes, thermal conductivity increases are directly proportional to length; at 800 nm 

thermal conductivity exceeds the unrestricted DWNT. The flexural mode can contribute 

more states to the thermal conductivity as the length of the CNT increases. Likewise, as 

the length increases the longitudinal mode in combination with torsional and breathing 

modes has a thermal conductivity that is greater than the DWNT, because the increased 

length adds additional longitudinal mode states that can contribute to thermal 

conductivity.  However, the combination of the longitudinal and flexural modes in CNTs 

result in a thermal conductivity that is lower than either would have with the absence of 

the other; an indication that the phonon-phonon interaction of the longitudinal and 
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flexural modes produces scattering resulting in the thermal conductivity seen for the 

DWNT.   

Thermal conductivity of functionalized carbon nanotubes 

  the thermal 

thermal conductivity when the functionalization atoms are held fixed on the SWNT  

The influence of united atom models of phenyl groups on

conductivity of 200 nm SWNTs and DWNTs is studied. Figure 18 shows the results of 

thermal conductivity for different densities of functionalization.  Thermal conductivity 

for a (10,10) SWNT experiences a significant drop with only 0.25% of its atoms 

functionalized.  The lowest thermal conductivity is shown for 1% functionalization.  The 

introduction of united atoms creates a phonon scattering site, which effectively reduces 

the phonon MFP in the SWNT, thus decreasing thermal conductivity.  The results are 

similar to those found by Padgett and Brenner for (10,10) SWNT [35].  In contrast, the 

(10,10)@(19,10) DWNT’s thermal conductivity increases with a small amount of 

functionalization and only begins to decrease between 5% and 10% functionalization 

densities, but only slightly.  The DWNT has an additional wall that can contribute to 

thermal transport, so thermal conductivity is not expected to experience a decrease like 

that of the SWNT.  The increase of thermal conductivity, however, for the SWNT and 

DWNT is unexpected.  The increase for the SWNT can be attributed to the increased 

functionalization causing the SWNT to approach the behavior of a DWNT.  The 

functionalizing atoms in the case of the DWNT initially increase thermal conductivity, 

because the additional atoms restrict the flexural motion of the DWNT, which increases 

thermal conductivity when the longitudinal mode is unrestricted as mentioned in the 

previous section.  The influence of restricted flexural motion can be corroborated by the 
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Figure 18 Thermal conductivity of a (10,10) SWNT and (10,10)@(19,10) DWNT at 
different functionalization densities of a phenyl united atom 

  

(F n 

manner similar to the DWNT with mobile atoms, but quickly begins to decrease.  Small 

 

igure 19).  When the functionalizing atoms are fixed, thermal conductivity increases i

a 

percentages of functionalization are beneficial to restricting flexural motion in the 

SWNT; however, as the amount of fixed functionalizing atoms increase they produce a 

larger scattering influence by inhibiting the phonon MFP.  In the case of mobile and fixed 

functionalizing atoms at 10%, thermal conductivity for the SWNT is the same, which is 

an indication the increased functionalization is influencing the SWNT’s thermal 

conductivity to approach that of the DWNT. 
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Figure 19 Thermal conductivity of (10,10) SWNT when the functionalizing atoms are 

mobile and fixed. 
 
 The influence on thermal conductivity of a 200 nm (10,10) SWNT is shown as the 

v  

toms has an equilibrium position that can be closer to the CNT, the influence of σ is 

stronger when the distance is smaller.  As σ increases and, consequently, the equilibrium 

position is further away the interaction with the CNT begins to weaken.  Thermal 

conductivity is shown in Figure 20 for a 1% functionalized (10,10) SWNT.  The error is 

large in this measurement since the functionalizing atoms are mobile and can move 

between the regions used to produce the temperature gradient during the simulation.  The 

general trend that can be deduced from the thermal conductivity is a decrease as σ 

increases.  When the value of σ is small and it has a stronger interaction with the SWNT, 

alue of the Lennard-Jones parameter σ is varied.  When σ is small the functionalizing

a
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the flexural modes are restricted allowing a larger thermal conductivity; however, as σ 

increases its influence is weaker and it become a scattering site disrupting the phonon 

MFP in the SWNT. 

Table 7. Mean-square Vibrational amplitudes for 200 nm functionalized SWNTs 

Density of Functionalization <ur
2> (A2) <uθ2> (rad2) <uz

2> (A2) 
with Various Functalization Densities 

0% 24.037 0.16173 4.7263 
0.25% 10.006 0.53713 0.71162 

10% 14.732 

1% 33.893 0.21437 1.0755 
5% 2 .75 66 0.65069 

0.017392 
11.129 
1.8167 

 

 
Figure 20 Thermal conductivity of (10,10) SWNT as the Lennard-Jones parameter σ is 

varied 
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 Results from varying ε are not shown, because no substantial change in thermal 

conductivity was observed.  This result is not surprising when the Lennard-Jones 

potential is considered.  When the first derivative of the Lennard-Jones potential is 

considered with respect to ε, the following equation results 

⎥
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     (5.2) 

The slope of the potential as ε is varied is a constant, so no large changes in thermal 

conductivity should result by changing ε.  When the first derivative of the Lennard-Jones 

potential is considered with respect to σ, the following equation results 
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The slope indicates that shape of the potential changes when varying σ.  The value of σ 

w

the united atoms. 

σ r θ z

ill, therefore, model the strengthening and weakening of the bond between the CNT and 

Table 8. Mean-square Vibrational amplitudes for 200 nm 1% functionalized SWNT 
with Various σ Values 

 (A2) <u 2> (Å2) <u 2> (rad2) <u 2> (Å2) 

2.0 13.883 0.25255 4.4366 
2.5 8.1334 0.41734 4.8955 
3.0 21.848 0.13979 12.441 
3.5 6.1615 0.
4.0 5.6616 0.32959 
4.5 10.185 0.23802 3.2807 

29029 3.4952 
6.4162 
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Thermal Conductivity in Graphene 

 Thermal conductivity of graphene is show in Figure 21 for graphene confined in 

e directly compared; however, graphene does serve as a model for the 

conductivities show a similar trend Ts studied.  The 

thermal conductivity values, however, are larger for graphene when compared to CNTs 

of a similar length in Figure 14.  e C ddi onon modes, the 

phonon-phonon interactions cause ad scatt pre raphene [66].  The 

results of the N D simulation are ble to those reported by others [54].  Of the 

ngle modes’ thermal conductivity, the flexural mode shows the lowest overall; 

however, the result woul al mode does incorporate 

each vibrational direction (longitudinal, transverse, and flexural).  Graphene can be 

considered an unrolled SWNT.  Since graphene is 2-D versus the 3-D CNT, the two 

materials cannot b

behavior of a SWNT with no torsional or radial breathing modes. The thermal 

 in the length-dependence as the CN

Since th NT has a tional ph

ditional ering not sent in g

EM compara

si

d be a low estimation, since the flexur

longitudinal motion, as well.  The longitudinal and transverse modes have thermal 

conductivities lower than unrestricted graphene, which is due to the lack of modes to 

contribute to energy transport as mentioned earlier.  With combinations containing two 

modes, the flexural mode appears to introduce phonon-phonon interactions that do not 

enhance thermal conductivity.  Thermal conductivity increases from that observed with 

only the flexural mode, since the other two modes add phonon modes; however, the 

thermal conductivity is less than the result of the longitudinal or transverse mode alone.  

The out of plane motion of the flexural mode leads to a shorter MFP in the graphene, 

because the forces between the surrounding atoms is altered as the atoms are cause to 

move closer together due to the interatomic potential.  Furthermore, the influence of the 
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flexural mode can be noticed when comparing thermal conductivities of unrestricted 

graphene to the combination of longitudinal and transverse modes: thermal conductivity 

is larger for the two mode combination, since there is no disruptive out of plane motion.   

 The behavior of the graphene is beneficial in understanding thermal transport in 

the CNT.  Since torsional and radial breathing modes are not present in graphene, it can 

be speculated that modes that incorporate longer wavelength phonons with increasing 

length dominate thermal conductivity in both graphene and CNTs.  Because the CNT’s 

interatomic potential limits the vibrational motion of the atoms for the torsional and 

radial breathing modes, the larger influence on thermal conductivity will come from 

longitudinal and flexural modes, which will have a larger range of vibrational motion and 

also longer wavelengths of phonons.   
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Figure 21 Thermal conductivity of graphene that is confined in various directions. 
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CHAPTER VI  

 

CONCLUSIONS 

 

 Non-equilibrium MD simulations are used to investigate the influence of 

individual phonon on vibrational modes on the thermal conductivity in SWNTs and 

DWNTs.  Additionally, functionalized CNTs are modeled using united atom models of 

phenyl to investigate the influence of functionalization on the vibrational modes and 

graphene confined in various directions is studied.  Unlike previous studies that show 

thermal conductivity converging at short sample lengths, thermal conductivity of (10,10) 

and (19,10) SWNTs and (10,10)@(19,10) DWNTs is shown to continue increasing 

beyond 800 nm.  Using the DWNT to confine the motion of the SWNTs, the vibrational 

modes are isolated and show thermal conductivity to be largely influence by the 

contribution of longitudinal and flexural modes.  The phonon-phonon interaction of the 

flexural mode and longitudinal mode, however, causes degradation to thermal 

conductivity of CNT.  The influence of suppressing the flexural mode is also seen in the 

thermal conductivity of functionalized (10,10) SWNTs.  Though the SWNT experiences 

a decrease in thermal conductivity with only a small percentage of united atom phenyl 

groups functionalizing it, the DWNT does not show any decrease in thermal conductivity.  

Unexpectedly, both functionalized CNTs experience an increase in thermal conductivity 

attributed to the suppression of the flexural mode.  While investigating the influence on 

bond strength on thermal conductivity using the Lennard-Jones parameters σ and ε, 

thermal conductivity in SWNTs was shown to have a slight response to altering σ, which 
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corresponds to weakening and strengthening the bond.  Thermal conductivity was higher 

with smaller σ values—an indication that the stronger bond was also a method of 

suppressing flexural motion in the SWNT.  Furthermore, graphene is shown to have a 

thermal conductivity trends that are similar to CNTs, but higher in value since there is 

less phonon-phonon interaction.  When confining the vibrational mode, graphene also 

shows the flexural mode to contribute to the degradation of conductivity. 

 The results show promise in using CNTs in thermal management applications.  

Though the SWNT cannot be functionalized for use in thermal enhancement applications, 

DWNTs and MWNTs offer an alternative, since their interior walls offer additional 

pathway to transport heat even though the exterior wall may be treated.  For this reason, 

open-ended tubes will offer better access to the CNT’s interior walls than CNTs that have 

capped ends.  When processing CNTs longer samples will largely yield better thermal 

conductivity as long as the length of the system is not in the diffusive regime; therefore, 

processing techniques that do not break the CNT will be more desirable.  Graphene 

shows similar disadvantages as the SWNT, since scattering can be cause by treatment; 

however, films of a few layers of graphene may offer advantages similar to MWNTs. 

 Major contributions to the field of study include 

• A length-dependent study of thermal conductivity in DWNTs using MD 

simulations, 

• Confinement of vibrational motion in MD simulations, 

• Altering the Lennard-Jones potential parameters σ and ε to study their influence 

on thermal conductivity 
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Future Work 

 There are some extensions to this work that may offer further insight to the 

behavior of CNTs in thermal applications.  In the current work, united atom models were 

utilized to study the influence of bond strength on thermal conductivity.  By using an 

explicit atom model, a more accurate study of the influence of bond strength and atom 

interaction can be performed.  Furthermore, the use of a interatomic potential that 

describes covalent bonds will yield a better picture of the scattering cause by chemical 

treatments to the CNT.  Since the broader goal is to understand better techniques for 

using CNTs as fillers, future studies should extend these efforts to nanocomposite 

samples.  Models of hydrocarbons are readily described by the covalently bonding 

interatomic potentials in this study.  Time steps, minimization, and equilibration will 

require much scrutiny when moving to the nanocomposite sample. 

 In addition to modifing the model of the CNT, studying other materials is a route 

of interest as well.  Graphene was only considered in small instances here, but the 

influence of functionalization and defects on its thermal conductivity open a new 

direction for study.  Also, boron nitride nanotubes have received consideration in thermal 

studies.  Understanding the phonon behavior in theses materials offer a method of 

comparison to CNTs. 

59 



 

 

APPENDIX A  

 

SIMULATION SCRIPTS  

 
TubeGen Script 

 The following is a script that generates 150 unit cells of a (10,10) SWNT and 

outputs the results to a file named data.cnt. 

 
set relax_tube yes 
set format xyz 
set units angstrom 
set element1 C 
set element2 C 
set chirality 10,10 
set bond 1.4210 
set shape hexagonal 
set gutter 5.0000, 5.0000, 0.0000 
set cell_count 1,1,150 
generate 
save data.cnt 
exit 
 

LAMMPS script 

 The following LAMMPS scripts produce the thermal conductance for a 100 nm 

(5,5) SWNT under various conditions.  LAMMPS is frequently updated; therefore, the 

latest version may not support the commands present in this script.   

 

Script for Single-wall Carbon Nanotube Thermal Conductance 

clear 
log log.swnt5,5-100nm 
###Simulation of thermal conductivity for a single-walled carbon nanotube### 
###Initialization### 
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units metal 
dimension 3 
atom_style atomic 
boundary p p p 
processors 1 1 20 
 
#Atom definition 
read_data cnt/swnt8960-5,5-100nm+b.minimized 
region wall1 block  INF INF INF INF INF 10 units box 
region cold block INF INF INF INF 10 50 units box 
region tube block INF INF INF INF 50 1050 units box 
region hot block INF INF INF INF 1050 1091 units box 
region wall2 block INF INF INF INF 1091 INF units box 
#Settings and Simulation 
pair_style tersoff 
pair_coeff * * ../../LAMMPS/lammps-20Aug11/potentials/SiC.tersoff C 
mass * 12 
group wall1 region wall1 
group wall2 region wall2 
group cold region cold 
group hot region hot 
group tube region tube 
group nowalls union cold tube hot 
 
###EQUILIBRATION### 
neighbor 2.0 bin 
neigh_modify every 3 delay 3 
velocity nowalls create 300.0 49284121 
fix 1 nowalls nve 
#dump 1 all custom 10000 dump.nemd.swnt-1000A_b tag type x y z 
#dump 2 all xyz 500 dump.nemd.swnt-1000A_b.movie 
variable g_ke equal ke(tube) 
variable g_temp equal v_g_ke/1.5/8.617343e-5/8130 
thermo 2000 
thermo_style custom step temp ke etotal v_g_temp 
timestep 0.001 
run 200000 
 
###NEMD### 
#--CONSTANT FLUX--# 
fix 3 cold heat 1 -5 
fix 4 hot heat 1 5 
compute coldBath cold temp 
compute hotBath hot temp 
thermo 2000 
thermo_style custom step temp ke etotal v_g_temp c_coldBath c_hotBath  
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run 500000 
log logs/log.data_collect-swnt5,5-100nm_b 
 
###DATA COLLECTION### 
compute KE tube ke/atom 
variable temp atom c_KE[]/1.5/8.617343e-5 
fix 5 tube ave/spatial 200 1 200 z middle 55.1 v_temp file & 
 temp_profile/tmp.profile-swnt5,5-100nm_b units box 
thermo 2000 
thermo_style custom step temp ke etotal v_g_temp c_coldBath c_hotBath  
run 500000 
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Script for Double-wall Carbon Nanotube Thermal Conductance 

clear 
log log.dwnt10,10-100nm-both 
##Simulation for a double-walled CNT## 
###INITIALIZATION### 
units metal 
dimension 3 
boundary p p p 
atom_style atomic 
 
###ATOM DEFINITION### 
pair_style hybrid tersoff lj/cut 5.0 
read_data cnt/dwnt46656-10,10-100nm+b.minimized 
mass * 12.0 
 
###REGION DEFINITION### 
region wall1 block  INF INF INF INF INF 7.9 units box 
region cold block INF INF INF INF 7.9 76 units box 
region tube block INF INF INF INF 76 1076 units box 
region hot block INF INF INF INF 1076 1144 units box 
region wall2 block INF INF INF INF 1144 INF units box 
 
###SETTINGS### 
pair_coeff  * * tersoff ../../LAMMPS/lammps-20Aug11/potentials/SiC.tersoff C C 
pair_coeff 1 2 lj/cut 0.0048 3.851 
 
###GROUP DEFINITIONS### 
group one type 1 
group two type 2 
group wall1 region wall1 
group wall2 region wall2 
group cold region cold 
group hot region hot 
group tube region tube 
group nowalls union tube cold hot  
 
###EQUILIBRATION### 
neighbor 2.0 bin 
neigh_modify every 3 delay 3 
timestep 0.001 
fix 1 nowalls nve 
velocity nowalls create 300.0 1211984 
thermo 2000 
thermo_style custom step temp ke etotal 
run 500000 
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###NEMD### 
fix 3 cold heat 4 -5 
fix 4 hot heat 4 5 
compute coldBath cold temp 
compute hotBath hot temp 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 500000 
log logs/log.data_collect-dwnt10,10-100nm+b 
 
###DATA COLLECTION### 
compute ke nowalls ke/atom 
variable temp atom c_ke/1.5/8.617343e-5 
fix 5 all ave/spatial 200 1 200 z center 58.25 v_temp file & 
 temp_profile/temp.profile-dwnt10,10-100nm_b units box 
fix 7 one ave/spatial 200 1 200 z center 58.25 v_temp file & 
 temp_profile/temp.profile-dwnt10,10-100nm_b-int units box 
fix 9 two ave/spatial 200 1 200 z center 58.25 v_temp file & 
 temp_profile/temp.profile-dwnt10,10-100nm_b-ext units box 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 500000 
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Script for Double-wall Carbon Nanotube with Interior Wall Heated 

clear 
log log.dwnt10,10-100nm-int 
##Simulation for a double-walled CNT## 
###INITIALIZATION### 
units metal 
dimension 3 
boundary p p p 
atom_style atomic 
 
###ATOM DEFINITION### 
pair_style hybrid tersoff lj/cut 5.0 
read_data cnt/dwnt46656-10,10-100nm+b.minimized 
mass * 12.0 
 
###REGION DEFINITION### 
region wall1 block  INF INF INF INF INF 7.9 units box 
region cold block INF INF INF INF 7.9 76 units box 
region tube block INF INF INF INF 76 1076 units box 
region hot block INF INF INF INF 1076 1144 units box 
region wall2 block INF INF INF INF 1144 INF units box 
region cold_inner cylinder z 0 0 7 7.9 76 units box 
region cold_entire cylinder z 0 0 12 7.9 76 units box 
region hot_inner cylinder z 0 0 7 1076 1144 units box 
region hot_entire cylinder z 0 0 12 1076 1144 units box 
 
###SETTINGS### 
pair_coeff  * * tersoff ../../LAMMPS/lammps20Aug11/potentials/SiC.tersoff C C 
pair_coeff 1 2 lj/cut 0.0048 3.851 
 
###GROUP DEFINITIONS### 
group one type 1 
group two type 2 
group wall1 region wall1 
group wall2 region wall2 
group cold region cold 
group hot region hot 
group tube region tube 
group cold_entire region cold_entire 
group hot_entire region hot_entire 
group cold_inner region cold_inner 
group hot_inner region hot_inner 
group nowalls union tube cold hot  
 
###EQUILIBRATION### 
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neighbor 2.0 bin 
neigh_modify every 3 delay 3 
timestep 0.001 
fix 1 nowalls nve 
velocity nowalls create 300.0 1211984 
thermo 2000 
thermo_style custom step temp ke etotal 
run 500000 
 
###NEMD### 
fix 3 cold_inner heat 4 -5 
fix 4 hot_inner heat 4 5 
compute coldBath cold_inner temp 
compute hotBath hot_inner temp 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 500000 
log logs/log.data_collect_int-dwnt10,10-100nm_b 
 
###DATA COLLECTION### 
compute ke nowalls ke/atom 
variable temp atom c_ke/1.5/8.617343e-5 
fix 5 all ave/spatial 200 1 200 z center 58.25 v_temp file &
 temp_profile/temp.profile_intt-dwnt10,10-100nm_b units box 
fix 7 one ave/spatial 200 1 200 z center 58.25 v_temp file & 
 temp_profile/temp.profile_int-dwnt10,10-100nm_b-int units box 
fix 9 two ave/spatial 200 1 200 z center 58.25 v_temp file &
 temp_profile/temp.profile_int-dwnt10,10-100nm_b-ext units box 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 500000 
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Script for Double-wall Carbon Nanotube with Interior Wall Heated 

clear 
log log.dwnt10,10-100nm-ext 
##Simulation for a double-walled CNT## 
###INITIALIZATION### 
units metal 
dimension 3 
boundary p p p 
atom_style atomic 
 
###ATOM DEFINITION### 
pair_style hybrid tersoff lj/cut 8.0 
read_data cnt/dwnt46656-10,10-100nm+b.minimized 
mass * 12.0 
 
###REGION DEFINITION### 
region wall1 block  INF INF INF INF INF 7.9 units box 
region cold block INF INF INF INF 7.9 76 units box 
region tube block INF INF INF INF 76 1076 units box 
region hot block INF INF INF INF 1076 1144 units box 
region wall2 block INF INF INF INF 1144 INF units box 
region cold_inner cylinder z 0 0 7 7.9 76 units box 
region cold_entire cylinder z 0 0 12 7.9 76 units box 
region hot_inner cylinder z 0 0 7 1076 1144 units box 
region hot_entire cylinder z 0 0 12 1076 1144 units box 
 
###SETTINGS### 
pair_coeff  * * tersoff ../../LAMMPS/lammps-20Aug11/potentials/SiC.tersoff C C 
pair_coeff 1 2 lj/cut 0.0048 3.851 
 
###GROUP DEFINITIONS### 
group one type 1 
group two type 2 
group wall1 region wall1 
group wall2 region wall2 
group cold region cold 
group hot region hot 
group tube region tube 
group cold_entire region cold_entire 
group hot_entire region hot_entire 
group cold_inner region cold_inner 
group hot_inner region hot_inner 
group nowalls union tube cold hot  
group chiller subtract cold_entire cold_inner 
group heater subtract hot_entire hot_inner 
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###EQUILIBRATION### 
neighbor 2.0 bin 
neigh_modify every 3 delay 3 
timestep 0.001 
fix 1 nowalls nve 
velocity nowalls create 300.0 1211984 
thermo 2000 
thermo_style custom step temp ke etotal 
run 500000 
 
###NEMD### 
fix 3 chiller heat 4 -5 
fix 4 heater heat 4 5 
compute coldBath chiller temp 
compute hotBath heater temp 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 500000 
log logs/log.data_collect_ext-dwnt10,10-100nm_b 
 
###DATA COLLECTION### 
compute ke nowalls ke/atom 
variable temp atom c_ke/1.5/8.617343e-5 
fix 5 all ave/spatial 200 1 200 z center 58.25 v_temp file &
 temp_profile/temp.profile_ext-dwnt10,10-100nm_b units box 
fix 7 one ave/spatial 200 1 200 z center 58.25 v_temp file &
 temp_profile/temp.profile_ext-dwnt10,10-100nm_b-int units box 
fix 9 two ave/spatial 200 1 200 z center 58.25 v_temp file &
 temp_profile/temp.profile_ext-dwnt10,10-100nm_b-ext units box 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 500000 
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Script for Double-wall Carbon Nanotube with Exterior Wall Moving 

clear 
log log.dwnt10,10-100nm-ext_only 
##Simulation for a double-walled CNT## 
###INITIALIZATION### 
units metal 
dimension 3 
boundary p p p 
atom_style atomic 
 
###ATOM DEFINITION### 
pair_style hybrid tersoff lj/cut 8.0 
read_data cnt/dwnt46656-10,10-100nm+b.minimized 
mass * 12.0 
 
###REGION DEFINITION### 
region wall1 block  INF INF INF INF INF 7.9 units box 
region cold block INF INF INF INF 7.9 76 units box 
region tube block INF INF INF INF 76 1076 units box 
region hot block INF INF INF INF 1076 1144 units box 
region wall2 block INF INF INF INF 1144 INF units box 
region cold_inner cylinder z 0 0 7 7.9 76 units box 
region cold_entire cylinder z 0 0 12 7.9 76 units box 
region hot_inner cylinder z 0 0 7 1076 1144 units box 
region hot_entire cylinder z 0 0 12 1076 1144 units box 
 
###SETTINGS### 
pair_coeff  * * tersoff ../../LAMMPS/lammps-20Aug11/potentials/SiC.tersoff C C 
pair_coeff 1 2 lj/cut 0.0048 3.851 
 
###GROUP DEFINITIONS### 
group one type 1 
group two type 2 
group wall1 region wall1 
group wall2 region wall2 
group cold region cold 
group hot region hot 
group tube region tube 
group cold_entire region cold_entire 
group hot_entire region hot_entire 
group cold_inner region cold_inner 
group hot_inner region hot_inner 
group nowalls union tube cold hot  
group chiller subtract cold_entire cold_inner 
group heater subtract hot_entire hot_inner 
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group sample subtract two wall1 wall2 
 
###EQUILIBRATION### 
neighbor 2.0 bin 
neigh_modify every 3 delay 3 
timestep 0.001 
fix 1 sample nve 
velocity nowalls create 300.0 1211984 
thermo 2000 
thermo_style custom step temp ke etotal 
run 200000 
 
###NEMD### 
fix 3 chiller heat 4 -5 
fix 4 heater heat 4 5 
compute coldBath chiller temp 
compute hotBath heater temp 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 500000 
log logs/log.data_collect_ext_only-dwnt10,10-100nm_b 
 
###DATA COLLECTION### 
compute ke nowalls ke/atom 
variable temp atom c_ke/1.5/8.617343e-5 
fix 5 all ave/spatial 200 1 200 z center 58.25 v_temp file &
 temp_profile/temp.profile_ext_only-dwnt10,10-100nm_b units box 
fix 7 one ave/spatial 200 1 200 z center 58.25 v_temp file &
 temp_profile/temp.profile_ext_only-dwnt10,10-100nm_b-int units box 
fix 9 two ave/spatial 200 1 200 z center 58.25 v_temp file &
 temp_profile/temp.profile_ext_only-dwnt10,10-100nm_b-ext units box 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 500000 
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Script for Double-wall Carbon Nanotube with Interior Wall Moving 

clear 
log log.dwnt10,10-100nm-int_only 
##Simulation for a double-walled CNT## 
###INITIALIZATION### 
units metal 
dimension 3 
boundary p p p 
atom_style atomic 
 
###ATOM DEFINITION### 
pair_style hybrid tersoff lj/cut 5.0 
read_data cnt/dwnt46656-10,10-100nm+b.minimized 
mass * 12.0 
 
###REGION DEFINITION### 
region wall1 block  INF INF INF INF INF 7.9 units box 
region cold block INF INF INF INF 7.9 76 units box 
region tube block INF INF INF INF 76 1076 units box 
region hot block INF INF INF INF 1076 1144 units box 
region wall2 block INF INF INF INF 1144 INF units box 
region cold_inner cylinder z 0 0 7 7.9 76 units box 
region cold_entire cylinder z 0 0 12 7.9 76 units box 
region hot_inner cylinder z 0 0 7 1076 1144 units box 
region hot_entire cylinder z 0 0 12 1076 1144 units box 
 
###SETTINGS### 
pair_coeff  * * tersoff ../../LAMMPS/lammps-20Aug11/potentials/SiC.tersoff C C 
pair_coeff 1 2 lj/cut 0.0048 3.851 
 
###GROUP DEFINITIONS### 
group one type 1 
group two type 2 
group wall1 region wall1 
group wall2 region wall2 
group cold region cold 
group hot region hot 
group tube region tube 
group cold_entire region cold_entire 
group hot_entire region hot_entire 
group cold_inner region cold_inner 
group hot_inner region hot_inner 
group nowalls union tube cold hot  
group sample subtract one wall1 wall2 
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###EQUILIBRATION### 
neighbor 2.0 bin 
neigh_modify every 3 delay 3 
timestep 0.001 
fix 1 sample nve 
velocity nowalls create 300.0 1211984 
thermo 2000 
thermo_style custom step temp ke etotal 
run 500000 
 
###NEMD### 
fix 3 cold_inner heat 4 -5 
fix 4 hot_inner heat 4 5 
compute coldBath cold_inner temp 
compute hotBath hot_inner temp 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 500000 
log logs/log.data_collect_int_only-dwnt10,10-100nm_b 
 
###DATA COLLECTION### 
compute ke nowalls ke/atom 
variable temp atom c_ke/1.5/8.617343e-5 
fix 5 all ave/spatial 200 1 200 z center 58.25 v_temp file & 
 temp_profile/temp.profile_int_only-dwnt10,10-100nm_b units box 
fix 7 one ave/spatial 200 1 200 z center 58.25 v_temp file &
 temp_profile/temp.profile_int_only-dwnt10,10-100nm_b-int units box 
fix 9 two ave/spatial 200 1 200 z center 58.25 v_temp file &
 temp_profile/temp.profile_int_only-dwnt10,10-100nm_b-ext units box 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 500000 
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Script for Functionalized Single-wall Carbon Nanotube 

clear 
log log.fswnt10,10-200nm-1% 
##Simulation for a double-walled CNT## 
 
###INITIALIZATION### 
units metal 
dimension 3 
boundary p p p 
atom_style atomic 
 
###ATOM DEFINITION### 
pair_style hybrid tersoff lj/cut 5.0 
read_data /workspace/walkere1/func33844-10,10-200nm+b-1%-1.minimized 
 
mass 1 12.0 
mass 2 77.0 
 
###SETTINGS### 
pair_coeff  * * tersoff ../../local/lammps-4Dec11/potentials/SiC.tersoff C NULL 
pair_coeff 1 2 lj/cut 0.0035 3.7755 
pair_coeff 2 2 lj/cut 0.0026 3.7 
 
###GROUP DEFINITIONS### 
group one type 1 
group two type 2 
group wall1 id <= 260 
group wall2 id <> 33261 33520 
group cold id <> 261 520 
group hot id <> 33001 33260 
group tube id <> 521 33000 
group sample union tube cold hot 
group nowalls union tube cold hot two 
 
###EQUILIBRATION### 
neighbor 2.0 bin 
neigh_modify every 3 delay 3 
 
variable m loop 3 
label loop1 
if "$m > 4" then "jump script/in.fswnt200-1 exitloop1" 
minimize 0.0 1e-8 100000 1000000 
fix 2 all nve 
velocity all set 0.0 0.0 0.0 units box 
run 100  
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unfix 2 
next m 
jump script/in.fswnt200-1 loop1 
label exitloop1 
 
timestep 0.001 
fix 1 nowalls nve 
velocity nowalls create 300.0 1211984 
 
variable g_ke equal ke(sample) 
variable g_temp equal v_g_ke/1.5/8.6173743e-5/33000 
 
thermo 2000 
thermo_style custom step temp ke etotal v_g_temp 
run 50000 
 
label test 
if "(${g_temp} > 297.0) && (${g_temp} < 303.0)" then & 
 "jump script/in.fswnt200-1 break" & 
 else & 
 "velocity sample scale 300.0" "run 10000" "jump script/in.fswnt200-1 test" 
label break 
 
reset_timestep 0 
###DATA COLLECTION### 
dump 1 tube custom 10 /workspace/walkere1/dump25_1/*.fswnt200-1.dos id type xu yu 
zu vx vy vz 
dump_modify 1 sort id 
dump 2 two custom 10 /workspace/walkere1/dump25_1/fatoms/*.fatoms200-1.dos id 
type xu yu zu vx vy vz 
dump_modify 2 sort id 
run 50000 
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Script for Functionalized Double-wall Carbon Nanotube 

clear 
log log.funcd10,10-200nm-1% 
##Simulation for a double-walled CNT## 
 
###INITIALIZATION### 
units metal 
dimension 3 
boundary p p p 
atom_style atomic 
 
###ATOM DEFINITION### 
pair_style hybrid tersoff lj/cut 5.0 
read_data cnt/func93782-10,10-200nm+b-1%-2.minimized 
 
mass * 12.0 
mass 3 77.0 
 
###REGION DEFINITION### 
region wall1 block  INF INF INF INF INF 16.3 units box 
region cold block INF INF INF INF 16.3 152 units box 
region tube block INF INF INF INF 152 2152 units box 
region hot block INF INF INF INF 2152 2288 units box 
region wall2 block INF INF INF INF 2288 INF units box 
 
###SETTINGS### 
pair_coeff  * * tersoff ../lammps-7Apr11/potentials/SiC.tersoff C C NULL 
pair_coeff 1 2 lj/cut 0.0048 3.851 
pair_coeff 1 3 lj/cut 0.0010 3.55 
pair_coeff 2 3 lj/cut 0.0010 3.55 
pair_coeff 3 3 lj/cut 0.0026 3.7 
 
###GROUP DEFINITIONS### 
group one type 1 
group two type 2 
group three type 3 
 
group wall1 region wall1 
group wall2 region wall2 
group cold region cold 
group hot region hot 
group tube region tube 
group nowalls union tube cold hot  
 
###EQUILIBRATION### 
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neighbor 2.0 bin 
neigh_modify every 3 delay 3 
 
timestep 0.001 
fix 1 nowalls nve 
velocity nowalls create 300.0 1211984 
 
dump 1 all xyz 5000 /workspace/walkere1/fdwnt10,10-200nm+b-1.xyz 
 
thermo 2000 
thermo_style custom step temp ke etotal 
run 100000 
 
###NEMD### 
fix 3 cold heat 5 -2 
fix 4 hot heat 5 2 
 
compute coldBath cold temp 
compute hotBath hot temp 
 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 500000 
 
log logs/log.data_collect-funcd10,10-200nm+b-1% 
###DATA COLLECTION### 
compute ke nowalls ke/atom 
variable temp atom c_ke/1.5/8.617343e-5 
 
fix 5 all ave/spatial 200 1 200 z center 116.25 v_temp file & 
 temp_profile/temp.profile-fdwnt10,10-200nm_b-1% units box 
fix 7 one ave/spatial 200 1 200 z center 116.25 v_temp file & 
 temp_profile/temp.profile-fdwnt10,10-200nm_b-1%-int units box 
fix 9 two ave/spatial 200 1 200 z center 116.25 v_temp file & 
 temp_profile/temp.profile-fdwnt10,10-200nm_b-1%-ext units box 
fix 11 three ave/spatial 200 1 200 z center 116.25 v_temp file & 
 temp_profile/temp.profile-fdwnt10,10-200nm_b-1%-func units box 
 
thermo 2000 
thermo_style custom step temp ke etotal c_coldBath c_hotBath 
run 1000000 
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Script for Graphene Thermal Conductance 

clear 
log log.graphene-10,10-100nm 
#Simulation of thermal conductivity for a single-walled carbon nanotube 
 
#Initialization 
units metal 
atom_style atomic 
boundary p p p 
#processors 1 1 20 
 
#Atom definition 
read_data crystal/graphene32520-10,10-200nm 
 
#Settings and Simulation 
pair_style tersoff 
pair_coeff * * ../../../../../LAMMPS/lammps-20Aug11/potentials/SiC.tersoff C 
 
mass 1 12 
 
neighbor 2.0 bin 
neigh_modify every 3 delay 3 
 
timestep 0.001 
 
thermo 2000 
thermo_style custom step temp ke etotal pe 
 
variable m loop 3 
label loop1 
if "$m > 3" then "jump script/in.graphene100 exitloop1" 
minimize 0.0 1e-8 100000 1000000 
fix 2 all nve 
velocity all set 0.0 0.0 0.0 units box 
run 100 
unfix 2  
next m 
jump script/in.graphene100 loop1 
label exitloop1 
 
velocity all create 300.0 1211984 
fix 1 all nve 
 
#dump 1 all custom 10000 dump.nemd.swnt-100nm tag type x y z 
#dump 2 all xyz 10000 dump.nemd.swnt-100nm.movie 
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run 200000 
reset_timestep 0 
 
fix KEswap all thermal/conductivity 50 z 20 swap 20 
 
compute KE all ke/atom 
variable temp atom c_KE/1.5/8.617343e-5 
fix 3 all ave/spatial 2000 1 2000 z lower 100 & 
  v_temp file temp.profile-graphene10,10-100nm units box 
 
thermo 2000 
thermo_style custom step temp ke etotal f_KEswap 
run 1000000 
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Script for Bilayer Graphene Thermal Conductance 

clear 
log log.bilayer-10,10-100nm 
#Simulation of thermal conductivity for a single-walled carbon nanotube 
 
#Initialization 
units metal 
atom_style atomic 
boundary p p p 
#processors 1 1 20 
 
#Atom definition 
read_data crystal/bilayer65040-10,10-200nm 
 
#Settings and Simulation 
pair_style hybrid tersoff lj/cut 5.0 
pair_coeff * * tersoff ../../../../../LAMMPS/lammps-20Aug11/potentials/SiC.tersoff C C 
pair_coeff 1 2 lj/cut 0.0048 3.851 
 
mass * 12 
 
group one type 1 
group two type 2 
 
neighbor 2.0 bin 
neigh_modify every 3 delay 3 
 
timestep 0.001 
 
thermo 2000 
thermo_style custom step temp ke etotal pe 
 
variable m loop 3 
label loop1 
if "$m > 3" then "jump script/in.bilayer100 exitloop1" 
minimize 0.0 1e-8 100000 1000000 
fix 2 all nve 
velocity all set 0.0 0.0 0.0 units box 
run 100 
unfix 2  
next m 
jump script/in.bilayer100 loop1 
label exitloop1 
 
velocity all create 300.0 1211984 
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fix 1 one nve 
 
#dump 1 all custom 10000 dump.nemd.swnt-100nm tag type x y z 
dump 2 all xyz 10000 /scratch/walkere1/bilayer-lower_nve-100nm.xyz 
 
run 200000 
#reset_timestep 0 
 
fix KEswap one thermal/conductivity 50 z 20 swap 20 
 
compute KE all ke/atom 
variable temp atom c_KE/1.5/8.617343e-5 
fix 3 all ave/spatial 2000 1 2000 z lower 100 & 
  v_temp file temp.profile-bilayer10,10-100nm units box 
fix 4 one ave/spatial 2000 1 2000 z lower 100 & 
 v_temp file temp.profile-bilayer10,10-100nm-lower units box 
fix 5 two ave/spatial 2000 1 2000 z lower 100 & 
 v_temp file temp.profile-bilayer10,10-100nm-upper units box 
 
thermo 2000 
thermo_style custom step temp ke etotal f_KEswap 
run 1000000 



 

 
APPENDIX B  

 

RAW THERMAL CONDUCTIVITY DATA 

 

Table 9 Thermal Conductivity of CNTs 
Length 
(nm) 

(5,5) 
SWNT 
(W/m/K) 

Error (10,10) 
SWNT 
(W/m/K) 

Error (19,10) 
SWNT 
(W/m/K) 

Error (10,10)@(19,10) 
DWNT 
(W/m/K) 

Error 

25 170.99666 29.33374 140.92182 25.59983 173.48272 28.05006 166.25662 31.90126 
50 263.3963 41.29698 306.49064 31.53486 290.84733 42.07485 293.75032 29.72806 
100 414.76315 49.20131 449.55952 41.31526 433.57847 36.55526 534.54005 71.91429 
200 518.40133 72.92037 536.72015 31.66977 574.50649 40.30291 581.87192 26.02082 
400 890.863 81.4537 622.53426 38.06833 887.08157 45.22056 638.4812 22.85769 
600 937.19795 49.63509 711.39758 45.01525 933.3214 45.34244 742.42844 38.02399 
800 1115.24086 110.26017 863.52858 69.77223 951.27301 45.89825 899.54076 58.91302 
1000 -- -- 1244.87024 114.25777 1171.14969 69.14745 987.46402 36.02984 
1500 -- -- 1454.66234 212.38729   850.02047 53.87179 
2000   2186.11663 401.99703   1290.39803 139.27782
3000   4187.7945 1126.254   3655.57925 582.18407
4000   7563.15786 2618.58304 5937.70465 2142.66414   
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Table 10 Thermal Conductivity of DWNTs Using Different Heating Schemes 
Length 
(nm) 

External 
Wall Heated 
(W/m/K) 

Error Internal 
Wall Heated 
(W/m/K) 

Error External 
Wall 
Moving 
(W/m/K) 

Error Internal 
Wall 
Moving 
(W/m/K) 

Error 

25 174.02127 36.05994 156.34753 28.46671 294.11473 45.91583 -- -- 
50 299.73404 27.73143 249.78176 19.35103 440.59229 56.78718 407.15119 -6.89746 
100 527.00717 47.79234 455.49764 49.64906 727.46782 92.42369 585.95557 81.84783 
200 617.78415 31.32403 552.65748 35.14281 929.68075 69.71034 713.17754 118.13679 
400 648.87296 21.37998 636.38556 36.06449 -- -- 929.60363 46.18447 
600 -- --- --- -- 1101.92208 72.44247 1030.78639 39.39937 
800 899.03945 54.28724 896.00096 61.68708 1214.25229 58.43104 1173.12427 136.86581 
1000 985.13865 94.00774 1037.53665 95.85505 1193.74363 49.84031 1297.96399 172.0879 
1500 1030.99676 103.37286 1024.90467 107.24647 1193.74363 573.10988 1723.72712 334.06992 
2000 1321.81351 135.62123 1306.62894 139.16186 1898.58288 137.40801 3141.46624 553.68101 
 

Table 11 Thermal Conductivity of CNTs with One Mode Suppressed 
Length (nm) Longitudinal, 

Breathing, and 
Torsional Modes 
(W/m/K) 

Error Breathing, 
Torsional, and 
Flexural Modes 
(W/m/K) 

Error 

25 294.11473 45.91583 78.7913 9.76106 
50 440.59229 56.78718 138.13702 17.40752 
100 727.46782 92.42369 303.61062 75.75204 
200 929.68075 69.71034 395.07055 83.36899 
400 -- -- 501.63948 20.06164 
600 1101.92208 72.44247 739.52962 54.57531 
800 1214.25229 58.43104 1044.28212 123.19404 
1000 1193.74363 49.84031 1407.35106 215.27427 
1500 1193.74363 573.10988 -- -- 
2000 1898.58288 137.40801 4546.14521 1268.90696 

82 



 

Table 12 Thermal Conductivity of CNTs with Two or More Modes Suppressed 
Length 
(nm) 

Longitudinal 
and 
Breathing 
Modes 
(W/m/K) 

Error Longitudinal 
and  
Torsional 
Modes 
(W/m/K) 

Error Breathing 
and  
Torsional 
Modes 
(W/m/K) 

Error Torsional 
Mode 
(W/m/K) 

Error 

25 229.66166 32.72364 -- -- 125.20432 10.48268 100.18326 22.90195
50 332.28888 32.802 407.15119 -6.89746 147.62718 13.91429 151.10052 23.51796
100 641.80627 62.51569 585.95557 81.84783 245.0224 9.99427 207.03857 23.89742
200 901.27375 25.36579 713.17754 118.13679 310.14138 9.11714 268.11855 30.22596
400 1142.00279 55.82339 929.60363 46.18447 669.57918 77.35612 369.88955 59.29056
600 -- -- 1030.78639 39.39937 500.4295 35.01759 427.8313 7.98397 
800 1550.65732 34.31116 1173.12427 136.86581 675.65468 64.4527 639.51819 11.47011
1000 -- -- 1297.96399 172.0879   -- -- 
1500 -- -- 1723.72712 334.06992   -- -- 
2000 -- -- 3141.46624 553.68101   1551.07041 443.4958

     
Table 13 Thermal Conductivity of Functionalized CNTs at Various Percentages 

Mobile Functionalization Atoms Immobile Functionalization Atoms Functionalization 
Percentage SWNT (W/m/K) Error DWNT 

(W/m/K) 
Error SWNT (W/m/K) Error 

0 536.72015 31.66977 581.87192 26.02082 536.72015 31.66977 
0.25 174.11974 13.01021 595.38774 126.05238 565.36151 46.6133 

1 88.33585 10.24321 645.31359 94.51452 559.17637 41.28186 
5 348.83527 38.28959 687.39737 97.50571 541.33424 39.52961 
10 523.3027 115.03968 670.86783 47.18866 523.69198 26.78142 
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Table 14 Thermal Conductivity of Functionalized SWNTs for Various Values of the Lennard-Jones Parameter σ 
σ (Å) SWNT (W/m/K) Error 

2 574.22653 101.12719 
2.5 569.52532 74.36083 
3 555.46585 39.16571 

3.4 569.46076 71.39115 
3.5 567.58945 78.11221 
4 546.14878 47.77027 

4.5 542.66908 46.68799 
 

Table 15 Thermal Conductivity of Graphene with Three and Two Vibrational Modes Present 
Length 
(nm) 

Longitudinal, 
Transverse, 
and Flexural 

Modes 
(W/m/K) 

Error Longitudinal 
and 

Transverse 
Modes 

(W/m/K) 

Error Longitudinal 
and Flexural 

Modes 
(W/m/K) 

Error Transverse 
and 

Flexural 
Modes 

(W/m/K) 

Error 

25 250.69929 47.9866 229.66166 32.72364 388.95823 -137.2689 167.13773 30.82557 
50 277.71046 21.36809 332.28888 32.802 183.44887 9.78646 188.9923 11.81183 
100 596.38053 127.58018 641.80627 62.51569 389.48291 18.94428 342.70239 8.61946 
200 807.38218 11.05847 901.27375 25.36579 519.18396 -0.31629 433.47442 -6.65034 
400 1038.21187 41.42254 1142.00279 55.82339 663.27047 -10.88052 537.63303 -14.93018 
600 1133.35293 -21.75835 -- -- 823.41171 -6.26143 672.15897 -5.32454 
800 1492.8481 196.35843 1550.65732 34.31116 1021.15709 17.20757 859.10264 1.07983 
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Table 16 Thermal Conductivity of Graphene with One Vibrational Mode Present 
Length (nm) Longitudinal 

Mode (W/m/K) 
Error Transverse 

Mode (W/m/K) 
Error Flexural Mode 

(W/m/K) 
Error 

25 151.69509 33.54289 170.53952 38.73513 116.70738 30.48095 
50 235.20953 25.68199 232.24978 22.14694 141.92742 5.78283 

100 342.40458 32.67994 495.10012 39.77051 246.3465 10.99773 
200 573.22958 9.42386 565.70171 -18.13764 325.74059 -1.68378 
400 -- -- 681.898 -4.91729 465.0279 3.65241 
600 -- -- -- -- -- -- 
800 1115.1365 41.26508 -- -- 777.11087 21.42393 
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