Scintillation Properties Of SrI2(Eu2+) for High Energy Astrophysical Detectors: Nonproportionality as a Function Of Temperature and at High Gamma-Ray Energies

Full Abstract

Strontium iodide doped with europium [SrI2(Eu2+)] is a new scintillator material being developed as an alternative to lanthanum bromide doped with cerium [LaBr3(Ce3+)] for use in high-energy astrophysical detectors. As with all scintillators, the issue of nonproportionality is important because it affects the energy resolution of the detector. We investigate how the nonproportionality of SrI2(Eu2+) changes as a function of temperature from 16 to 60°C by heating the SrI2(Eu2+) scintillator separate from the photomultiplier tube. In a separate experiment, we also investigate the nonproportionality at high energies (up to 6 MeV) of SrI2(Eu2+) at a testing facility located at NASA Goddard Space Flight Center. We find that the nonproportionality increases nearly monotonically as the temperature of the SrI2(Eu2+) scintillator is increased, although there is evidence of nonmonotonic behavior near 40°C, perhaps due to electric charge carriers trapping in the material. We also find that within the energy range of 662 keV to 6.1 MeV, the change in the nonproportionality of SrI2(Eu2+) is ∼1.5 to 2%.

Read the full article

Login to view comments.